
- "splitting" of mind (cognition/emotion) from reality
 - 1% of population globally
 - shamans or mentally ill
- Several subtypes: paranoid / catatonic / disorganized / undifferentiated / residual
- positive ("exaggerated) / negative ("absence") symptoms
 perception (hallucinations)
 - delusions (false beliefs)
 - language (disorganized speech)
 - odd social behavior
 - motor (stereotyped and/or lack of movements)
 - avolition (lack of motivation / goal directed behaviors)
 - flattened affect / blunted emotional expression
 - anhedonia (lack of pleasure)
 - decreased memory, attention, executive function

- Morphological / structural changes
 - disorganized neurons / larger ventricles
 - neurodevelopmental problems induce susceptibility
 - treatment is of the symptoms, not the underlying problem

This image is of 28-year-old identical twins, one with schizophrenia and the other well. It therefore clearly illustrates two points: (1) schizophrenia is a brain disease with measurable structural and functional abnormalities in the brain; and (2) it is not a purely genetic disease, and other biological factors play a role in its etiology.

SCHIZOPHRENIA IN IDENTICAL TWINS

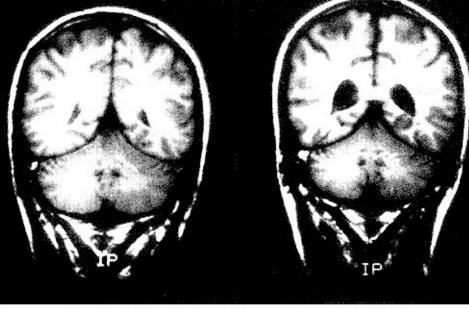
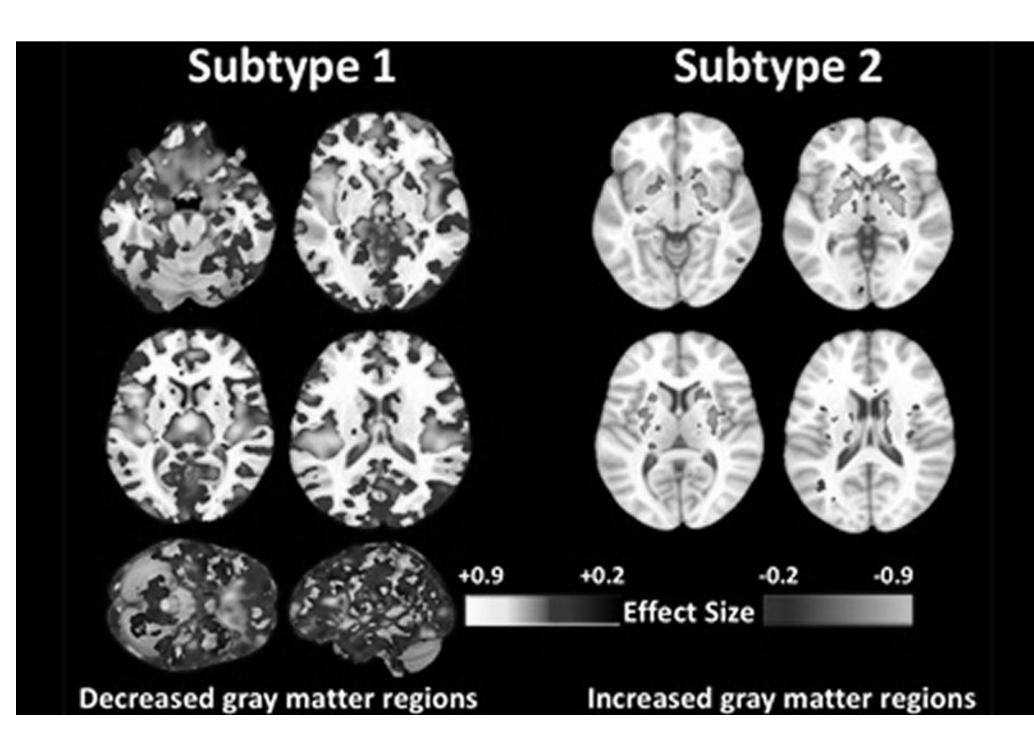
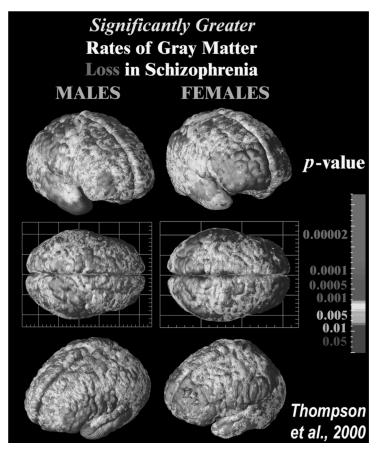




Photo courtesy of Drs. E. Fuller Torrey and Daniel Weinberger

MRI scans of 28-year-old male identical twins showing the enlarged brain ventricles in the twin with schizophrenia (right) compared to his well brother (left).

- Factors (nature <u>and</u> nurture)
 - genes that make one "susceptible"
 - dysfunctional reward system
 - environment stress, infections (?)
 - in utero toxoplasmosis, flu (birth month effect)

This image is of 28-year-old identical twins, one with schizophrenia and the other well. It therefore clearly illustrates two points: (1) schizophrenia is a brain disease with measurable structural and functional abnormalities in the brain; and (2) it is not a purely genetic disease, and other biological factors play a role in its etiology.

SCHIZOPHRENIA IN IDENTICAL TWINS

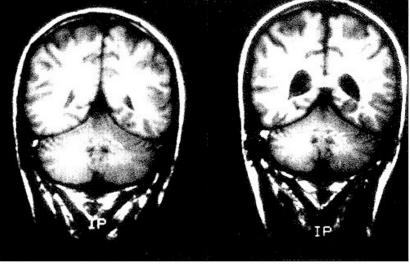
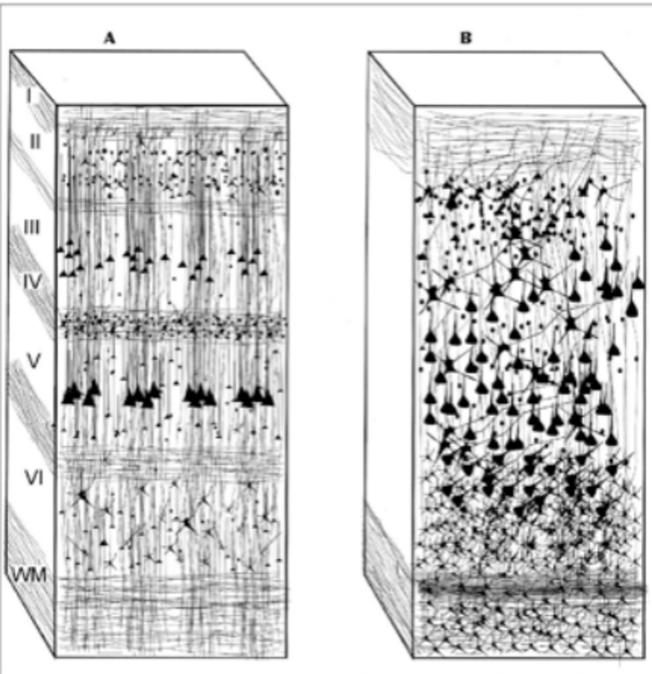
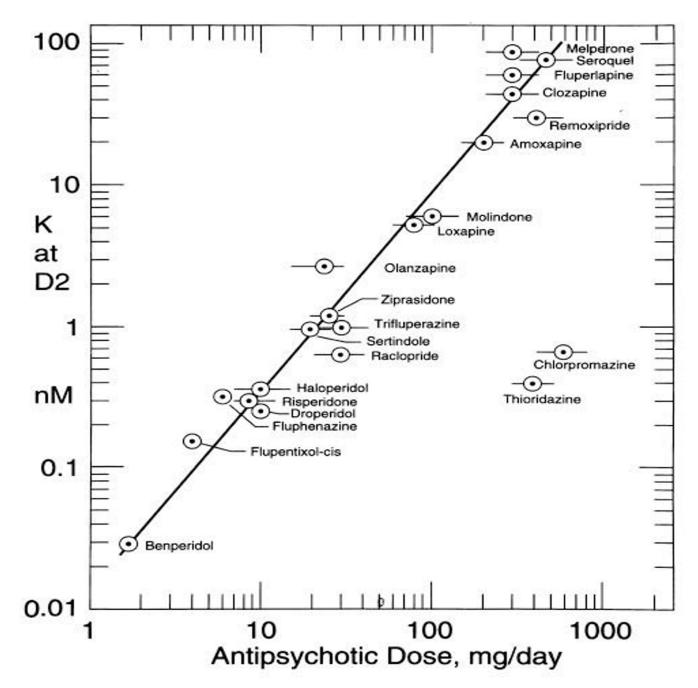



Photo courtesy of Drs. E. Fuller Torrey and Daniel Weinberger

MRI scans of 28-year-old male identical twins showing the enlarged brain ventricles in the twin with schizophrenia (right) compared to his well brother (left).

ectopic migration


- "pre-morbid" signs sometimes seen in early childhood
- 1st overt signs generally appear after puberty / early 20's in men, mid 20's to early 30's in women
 - Age-related response to ketamine / PCP
 - Estrogen may be protective
- clinical deterioration tends to plateau after 5-10 years
 - early treatment (pharmacological + talk therapy) provides pretty good prognosis

- 10 years after 1st diagnosis:
 - ~25% are almost totally improved
 - ~25% "much" improved
 - ~25% improved but still need support
 - ~15% unimproved or worse
 - ~10% dead (often due to suicide)
- Among those with schizophrenia:
 - ~30% live independently
 - ~25% live with family
 - ~20% live in supervised housing
 - ~10% are institutionalized
 - ~8% are incarcerated
 - ~7% are homeless

- Neurotransmitter abnormalities broad overview:
 DA, 5-HT, glu
 - Originally "pure DA" hypothesis
 - too much
 - indistinguishable from an amphetamine / cocaine OD

• "Typical" antipsychotics are **DA antagonists**

- 2 major receptor types
 - D_1 (subtypes: D_1 , D_5)
 - D_2 (subtypes: D_2 , D_3 , D_4)
 - antipsychotics primarily block D₂ receptors
 - clinical efficacy highly correlated with degree of D₂ binding

- Glutamate receptors:
 - NMDA receptor *hypo*function
 - ketamine / PCP
 - NMDA receptor knockout (NMDA-/-) mice:
 - behavioral symptoms similar to schizophrenia
 - no DA dysfunction
 - responded to antipsychotics ("dopaminergic")
- so.....
 - Increased DA = "positive" symptoms?
 - particularly in the "limbic" areas
 - decreased glu = "negative" symptoms?

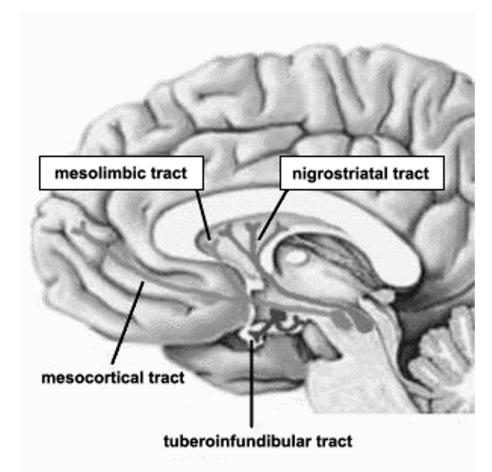
• Also 5-HT:

- 5-HT₂ activity induces cognitive / motor abnormalities
- lots of neurons with 5-HT receptors release glu.....
- Psychedelics are generally 5HT₂ agonists

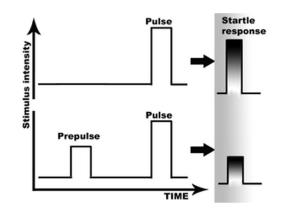
• possible treatment with 5HT₂ antagonists

- Antipsychotics (aka the "major tranquilizers")
 - not pleasant / euphoric like the "minor tranquilizers" (benzodiazepines)
- Typical / classical / traditional / neuroleptic
 - generally, control "positive" symptoms
 - have some bad motor "extrapyramidal" effects
 - *tardive dyskinesia* (Parkinson's-like)
 - Parkinson's medicine ("dopamine") causes schizophrenia-like psychosis
 - inseparable from antipsychotic effects

- <u>Typical antipsychotics</u> the Phenothiazines:
 - chlorpromazine ("Thorazine") calming, detached effect
 - antidote for psychedelics (serotonergic ones like LSD)
- Thorazine developed in early 1950's
 - in rats, induced indifference to aversive stimuli
 - quickly moved to use in humans
 - "woke" some individuals w/ schizophrenia ("lifted a blanket")
 - at higher doses ("institutionalization") can become a "chemical straight jacket"
- Medical model started at Wash U (use of scientific method to study mental disorders)
 - 1st drug used to treat a mental disorder started "Golden Age of Psychotropic Drugs"
 - thorazine, lithium, imipramine, & prozac
 - almost everything else is based on these


• Pharmacokinetics:

- erratically absorbed orally, better by intramuscular injection
- only a small % gets to brain
- Iong half-lives (1-2 days)


Pharmacodynamics:

- **block D₂ receptors** antipsychotic effects
 - about 60-80% of D_2 receptors must be blocked for clinical effects
 - higher blockage % leads to "extrapyramidal" motor effects
- Also block:
 - ACh -> dry mouth, blurred vision, etc (scopolamine)
 - Histamine -> sedation
 - NE -> hypotension, sedation

- IF increased sensitivity to DA is responsible for the "positive" symptoms...
 - block receptors > reduce symptoms
 - Blocking D₂ receptors in <u>limbic system</u> (target):
 - get DA from the axons of neurons originating in the midbrain brainstem
 - involved with emotional expression

- blocking D₂ receptors in the <u>brainstem reticular formation</u>:
 - reduces sensory inflow
 - induces indifference to external stimuli

- BUT....
- blocking D₂ receptors in the basal ganglia:
 - causes motor deficits:
 - extrapyramidal (early Parkinson's-like) tardive dyskinesia
 - side effects may be "prophylactically" treated with anti-Parkinson's drugs
- blocking D₂ receptors in the <u>hypothalamus</u>:
 - causes deficits in eating, sleeping, sexual function

- other effects permanently impaired vision, cognitive deficits
- no tolerance or dependence issues
- Another class of typical antipsychotics: Butyrophenones
 - haloperidol (Haldol)
 - droperidol (Inapsine)
 - work similarly, and generally, no better than chlorpromazine
- **Typical antipsychotics** characterized by:
 - inseparable motor problems
 - working primarily on "positive" symptoms

• Newer ("atypical") drugs – also block

multiple receptors, but primarily 5-HT

- control both positive and negative symptoms
- have *fewer* side effects:
 - weight gain, increased risk of

diabetes, cardiac arrhythmia

• "metabolic syndrome"

- Atypicals generally defined as a drug that block more than 80% of 5-HT₂ receptors and less than 80% of D₂ receptors
- may improve, rather than impair, cognition
 - by inducing release of ACh in cortex (positive memory effects)

- Clozapine 1st atypical (90s)
 - weak D₂ antagonist
 - strong 5-HT₂ antagonist
 - also blocks D₄, 5-HT_{1C}, adrenergic apha-1, plus others
 - Effective for both + / symptoms
 - very few extrapyramidal effects
 - fewer cognitive deficits than typicals
 - sedation, extreme weight gain, white blood cell toxicity
 - withdrawal syndrome psychotic episodes

- 3rd generation antipsychotics
- Aripiprazole ("Abilify") 2003
 - partial AGONIST of D₂ receptors
 - 5-HT₂ antagonist
 - "antipsychotic"
 - 5-HT_{1A} agonist
 - "antidepressant"
 - stabilizes neuronal activity
 - increases activity at low dose, blocks activity at higher doses
 - "compressor" reduces dynamic range of neural activity
 - Few major side effects
 - also used for bipolar disorder
- CBD

- "manic depression" recurring episodes of depression / mania
 - •usually more depression
 - ~1-5% of population (2 episodes = long-term treatment)
 - high incidence of substance abuse
 - 10x more likely to commit suicide

- other causes must be ruled out:
 - thyroid hyperactivity
 - antidepressants, anti-Parkinson's
 - corticosteroids, anabolic steroids
 - caffeine, (pseudo)ephedrine, other stimulants
- progressive neurodegenerative disease:
 - Ioss of neurons in the hippocampus and prefrontal cortex
 - altered function / plasticity
- medication used when it becomes disruptive to life
- Certain antidepressants can <u>induce</u> mania

- **Mood stabilizers** "compress" emotional dynamic range
 - major focus of treatment is reduction of mania
 - reduce / prevent "flipping" from depression to mania
- lithium (Li⁺) the classic
- current 1st treatment atypical antipsychotics
 - lithium + antipsychotic
 - lithium + antipsychotic + anticonvulsant (GABAergic)
- omega-3s
 - like the antidepressants, most newer drugs generally don't work any *better*, but have fewer side effects

- Lithium (Li⁺) the classic
- chemically very similar to sodium
 - fluctuations in dietary sodium can mess with dosage
 - sodium used to treat lithium OD

- very effective (~60-70%) at controlling mania / prevents relapse
- at normal dosages, no effect in normal individuals
- bad side effects with narrow dosage range:
 - GI distress, tremor, lethargy, dizziness, slurred speech, ataxia, muscle weakness, muscle / eye twitches, massive weight gain, thyroid enlargement / goiter, cardiac arrhythmia, impaired concentration, memory, psychosis, stupor, death
 - teratogenic (harmful to developing fetus heart especially 1st trimester)
 - relapse often result of non-compliance (almost 50%)
- also, patients can miss the "high" of manic phase
- when halted, increased risk of suicide
- relatively high % of patients resistant

• Pharmacokinetics:

- rapidly absorbed orally, but crosses BBB slowly and erratically
- long $\frac{1}{2}$ life (~1 day)
 - stored in cells: ~2 weeks for "steady state" blood levels
- excreted <u>unchanged</u> by the kidneys

• Pharmacodynamics:

- not well-understood (2nd messengers / intracellular enzymes)
- upregulates expression of neurotrophic / neuroprotective proteins (CREB, bdnf, bcl-2)
 - suggests early pharmacological treatment may reduce neuropathology
- very narrow dosage range limits use (requires blood level checks)
 - nausea, tremors / neurological deficits, kidney problems, cardiotoxicity
- More often used in combination with other drugs