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and underlying mechanism of mitochondrial impairment 
could provide a molecular target to prevent or alleviate 
dopaminergic toxicity induced by MA.
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Introduction

Methamphetamine (MA) abuse has been a global health 
issue for the past several decades [1]. MA is an amphet-
amine-type psychostimulant with high lipid solubility, 
thus it can easily pass through the blood–brain barrier 
[2]. In the brain, dopaminergic cells take up MA through 
the dopamine transporter (DAT) as a substrate due to its 
similarity to dopamine (DA). Additionally, MA can enter 
dopaminergic axons slowly by lipophilic diffusion at high 
concentrations. MA induces abnormal DA release into the 
synaptic cleft, which might mediate its abuse potential and 
dopaminergic neurotoxicity [3]. Moreover, an increase in 
extravesicular cytosolic DA may largely account for MA-
induced neurotoxicity [4–6]. MA-induced vesicular or syn-
aptic DA release primarily results from DA displacement 
from synaptic vesicles through the vesicular monoamine 
transporter-2 (VMAT-2) or the reverse transport of DA 
into synaptic cleft through the DAT [7, 8]. The nigrostriatal 
DA projection has been reported to be more susceptible to 
MA-induced dopaminergic neurotoxicity than the mesocor-
ticolimbic DA projection [9–11], as shown in patients with 
Parkinson’s disease (PD). Serotonergic toxicity has also 
been well-recognized after MA administration, although to 
a lesser extent and to a more diffuse pattern than dopamin-
ergic toxicity [12–14].

Abstract  Methamphetamine (MA), an amphetamine-type 
psychostimulant, is associated with dopaminergic toxic-
ity and has a high abuse potential. Numerous in vivo and 
in vitro studies have suggested that impaired mitochondria 
are critical in dopaminergic toxicity induced by MA. Mito-
chondria are important energy-producing organelles with 
dynamic nature. Evidence indicated that exposure to MA 
can disturb mitochondrial energetic metabolism by inhib-
iting the Krebs cycle and electron transport chain. Altera-
tions in mitochondrial dynamic processes, including mito-
chondrial biogenesis, mitophagy, and fusion/fission, have 
recently been shown to contribute to dopaminergic toxic-
ity induced by MA. Furthermore, it was demonstrated that 
MA-induced mitochondrial impairment enhances suscep-
tibility to oxidative stress, pro-apoptosis, and neuroinflam-
mation in a positive feedback loop. Protein kinase Cδ has 
emerged as a potential mediator between mitochondrial 
impairment and oxidative stress, pro-apoptosis, or neuro-
inflammation in MA neurotoxicity. Understanding the role 
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Mitochondrial impairment has long been suggested to 
play a pivotal role in MA-induced dopaminergic neurotox-
icity. Earlier studies demonstrated that energetic metabo-
lism in mitochondria is deregulated following MA adminis-
tration [15–19]. In recent years, evidence has suggested that 
disrupted mitochondrial dynamics, including biogenesis, 
mitophagy, and fusion/fission, are involved in MA neuro-
toxicity [20–26]. In this review, we introduce the functional 
and structural changes in mitochondria induced by MA. In 
particular, we highlight the role of mitochondrial changes 
on the oxidative stress, pro-apoptosis, and neuroinflamma-
tion induced by MA.

Overview of MA Neurotoxicity

Accumulating evidence indicates that dopaminergic toxic-
ity can result from long-term MA abuse. Initially, Wilson 
et  al. [27] showed reduced striatal DA levels in chronic 
MA abusers. This finding has been supported by positron 
emission tomographic (PET) studies reporting decreased 
DAT levels in the striatum of MA abusers [28–30]. These 
changes in dopaminergic markers in the striatum might 
last for months to years after MA abstinence. Although the 
striatum, especially the caudate nucleus, is the most vulner-
able to DA loss after chronic MA abuse [31], prolonged 
decreases in DAT levels have been observed in other brain 
regions, including the nucleus accumbens and prefrontal 
cortex [32].

Dopaminergic damage shown in MA abusers has been 
reproduced in animal models. A single, high-dose of MA 
or binge administration of moderate-to-high doses of MA 
induced significant and sustained decreases in levels of 
DA, tyrosine hydroxylase (TH), and DAT in the striatum 
[12, 33–42]. Dosing schedules that more closely resemble 
human MA abuse pattern, including self-administration 
and escalating dosing regimen, have also been reported 
to induce dopaminergic damage [43–46]. However, the 
self-administration and escalating dosing regimen of MA 
appeared to be less effective than binge doses of MA in 
inducing dopaminergic neurotoxicity [43, 45–47]. In addi-
tion, prior injection with escalating MA doses (0.1–4.0 mg/
kg over 14 days) attenuated dopaminergic toxicity induced 
by binge doses of MA (6  mg/kg × 4) [48]. Furthermore, 
the extent of DA loss in the striatum of individuals with 
MA abuse [31] was comparable to the degree of DA loss 
induced by MA binge exposure in rodents [49, 50]. Thus, 
MA binge exposure in rodents has mainly been used as an 
animal model to study the neurotoxic mechanism of MA.

The nigrostriatal pathway is more likely to be suscepti-
ble to MA-induced dopaminergic toxicity than the meso-
corticolimbic pathway [10, 11]. Unlike clinical findings, 
nigral neuronal death has been observed in rodents after 

MA binge exposure. Earlier studies showed fewer TH- 
and Nissl-positive cells after MA binge exposure (10 mg/
kg, i.p. × 4) [51], which was confirmed with more rigorous 
stereological measures [38, 39, 41, 52, 53]. Notably, recent 
research reported that TH-immunostaining co-localized 
with amino-cupric-silver staining in the substantia nigra 
after single (30  mg/kg, i.p.) or multiple (5 or 10  mg/kg, 
i.p. × 3) MA administration, revealed degenerative changes 
in dopaminergic cell bodies in that region [53]. In addition, 
TUNEL- or Fluoro-Jade-positive cells have been observed 
in the striatum following MA administration [39, 42, 
54–56]. Zhu et al. [56] reported that GABA-parvalbumin-
positive neurons are most vulnerable to MA (30 or 40 mg/
kg, i.p. × 1)-induced apoptosis in the striatum, while soma-
tostatin-positive interneurons were resistant to this change. 
MA administration has also been reported to induce signifi-
cant dopaminergic terminal damage in the amygdala and 
frontal cortex [12, 13]. Interestingly, cytoplasmic inclusion 
bodies with α-synuclein-immunoreactivity, which are anal-
ogous to Lewy bodies in Parkinson’s disease (PD), have 
been found in the dopaminergic cells in the substantia nigra 
after MA binge exposure (5 mg/kg, i.p. × 3) [57] or expo-
sure to MA (1 μM for 12 h or 3 mM for 24 h) in PC12 cells 
[58, 59]. In addition, MA abuse has been suggested to con-
tribute to the increased risk of PD users [60–62]. Therefore, 
in vivo and in vitro models of MA use might be valuable in 
studying the cellular and molecular mechanisms of PD.

Mitochondrial Dysfunction in MA‑Induced 
Dopaminergic Toxicity

Changes in Energetic Metabolism

Mitochondria are important bioenergetic organelles for 
maintaining normal cell function. The Krebs cycle [tri-
carboxylic acid (TCA) cycle] and electron transport chain 
(ETC) are the essential metabolic pathways for producing 
ATP. Electron flow through complexes I, II, III, and IV 
of the ETC is accompanied by proton pumping into the 
mitochondrial intramembranous space, and establishes the 
mitochondrial transmembrane potential (∆Ψm) and pH 
gradient. This proton-motive force produces ATP through 
complex V (H+-ATP synthase) of the ETC [63–65].

In this context, MA administration has been shown to 
inhibit several important Krebs cycle and ETC enzymes. 
Earlier study by Burrow and Meshul [15] showed that 
mitochondria were significantly less immunoreactive 
for Krebs cycle intermediates in the basal ganglia of rats 
at 1  week after the final MA administration (15  mg/kg, 
s.c. × 4). Similarly, a single MA administration at doses 
as low as 0.5 and 1.0 mg/kg significantly decreased citrate 
synthase and succinate dehydrogenase activities in tissue 
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homogenates [18]. In addition, a number of studies have 
examined the expression and activity of ETC enzymes after 
MA administration; however, the results were inconsistent 
depending on the species, dosing regimen, and time point 
[16–19, 66–74]. Brown et  al. [16] showed that the activ-
ity of complexes II–III, specifically complex II, decreased, 
but complex I activity remained unchanged at 1 h after the 
final administration with MA (10  mg/kg, s.c. × 4) in the 
striatum of rats. In line with this finding, an intrastriatal 
infusion of malonate, a complex II inhibitor, potentiated 
dopaminergic toxicity induced by intrastriatal infusion of 
MA [66]. On the other hand, complex I activity decreased 
significantly in the striatum at 5 h after the MA administra-
tion (10 or 20 mg/kg, s.c. × 2) in mice [17] or 5 days after 
the MA administration (10 mg/kg, s.c. × 2) in rats [19]. In 
addition, Feier et al. [18] showed that striatal complex IV 
activity decreased significantly at 2 h after a single dose of 
MA (0.5–2.0 mg/kg, i.p.) in rats. In this regard, intrastriatal 
infusion of ETC enhancers, decylubiquinone or nicotina-
mide, significantly attenuated the MA-induced dopaminer-
gic toxicity [67, 68]. The main findings on changes in ETC 

enzymes following the MA administration are summarized 
in Table 1.

The disruption of the Krebs cycle and ETC is further 
evidenced by altered ∆Ψm, oxygen consumption, and 
ATP production [64]. Exposure to MA reduced ΔΨm in 
striatal, mesencephalic cultures [24, 75, 76] or SH-SY5Y 
cell cultures [72, 74, 77]. These findings have been further 
supported by in  vivo studies with mitochondria isolated 
from MA-administered mice [39, 41, 42]. ∆Ψm started to 
decrease as early as 1 h after MA exposure (1.68 mM) in 
SH-SY5Y cells [72], which is consistent with our findings 
[42] that ΔΨm decreased 0.5 h after a single, high dose of 
MA (35  mg/kg, i.p.). In addition, numerous in  vitro and 
in vivo studies have reported the decline of both mitochon-
drial oxygen consumption and ATP content in response to 
MA exposure [67, 75, 78–80].

Disruption of Mitochondrial Dynamics

Mitochondria were considered to be relatively static orga-
nelles for many decades; however, this concept has been 

Table 1   Summary of preclinical studies on changes in ETC enzyme activity and expression after MA administration (exposure) in  vivo or 
in vitro

NS not specified, SN substantia nigra, NAc nucleus accumbens, FC frontal cortex, OC occipital cortex

Subjects MA dosing regimen Time-point after the 
last MA administration 
(exposure)

Findings References

Brain regions Changes

Rat 5 mg/kg/day, i.p. for 
28 days

NS Striatum, SN, NAc, FC, 
OC

Complex IV protein 
expression

↓ [69]

Rat 10 mg/kg, i.p. × 4 at 2-h 
intervals

2 h Striatum, NAC, SN Complex IV protein 
expression

↓ [70]

24 h and 7 days Complex IV protein 
expression

–

Rat 10 mg/kg, s.c. × 4 at 2-h 
intervals

1 h Striatum Complex I–III activity – [16]
Complex II activity ↓

Mouse 30 mg/kg/day, i.p. for 
7 days

1 days Striatum Complex I protein expres-
sion

↓ [71]

SH-SY5Y cells At a concentration of 
1.68 mM for 48 h

Immediately Protein expression of 
complex I, II, and III

– [72]

Protein expression of 
complex IV and V

↓

Mouse 10 mg/kg, i.p. × 4 at 2-h 
intervals

7 days Striatum Protein expression of 
complex I and V

↓ [73]

Rat 5 mg/kg, i.p. × 4 at 2-h 
intervals

12 h FC Complex I activity ↓ [74]

Mouse 10 or 20 mg/kg, i.p. × 2 at 
12-h interval

5 h Striatum Complex I activity ↓ [17]
Complex IV activity –

Rat 0.5–2.0 mg/kg, i.p. × 4 2 h Striatum The activity of complex 
I and II

– [18]

The activity of complex 
II–III and IV

↓

Rat 10 or 20 mg/kg, i.p. × 2 at 
2-h interval

5 days Striatum Complex I activity ↓ [19]
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changed by recent progress in understanding the dynamic 
nature of mitochondria, including biogenesis, mitophagy, 
and fusion/fission [81]. Several important findings in mito-
chondrial dynamics after MA exposure (administration) 
have come in recent years.

Mitochondrial biogenesis can be roughly defined as 
an increase in the number and/or mass of mitochondria. 
Thus, mitochondrial biogenesis requires the transcription 
of nuclear and mitochondrial DNA, synthesis of proteins 
and lipids, and assembly of these components into fully 
functioning mitochondria. Altered mitochondrial biogen-
esis can be assessed by the level of related transcription 
factors and coactivators, or the mRNA expression of ETC 
components [81]. Elevated levels of cytochrome c oxidase 
subunit 1 (COX1) mRNA, a part of complex IV, has been 
reported in the substantia nigra of mice at 12  h follow-
ing a toxic dose of MA (45 mg/kg, s.c.) [82, 83]. A more 
recent study showed that repeated escalating doses of MA 
(1–14 mg/kg, i.p. over 14 days) induced the mRNA expres-
sion of proliferator-activated receptor-γ coactivator-1α 
(PGC-1α) or mitochondrial transcription factor A (TFAM), 
both mitochondrial biogenesis-related factors, in the sub-
stantia nigra of rats [84]. Considering that most in  vivo 
and in  vitro studies have reported MA-induced decreases 
in ETC protein expression and activity, as summarized in 
Table 1, increases in the mRNA level of PGC-1α or TFAM 
may compensate for the disrupted mitochondrial bioener-
getic metabolism against MA insult.

Mitophagy is a process of defective mitochondria being 
degraded by mitochondria-specific autophagy in cells. 
Thus, reduced mitophagy has been suggested to lead to an 
accumulation of defective mitochondria [85]. In mitophagy, 
several specialized proteins, such as PTEN-induced puta-
tive kinase 1 (PINK1) and Parkin, target and modify mito-
chondrial proteins, and recruit autophagosomes [81]. Fornai 
et  al. [86] reported Parkin-positive intracellular inclusion 
bodies in the substantia nigra of mice after MA binge expo-
sure (5 mg/kg, i.p. × 4). More specifically, Lenzi et al. [23] 
showed that the number of damaged mitochondria and pro-
portion of Parkin-positive mitochondria increased, while 
the total number of mitochondria was unchanged in PC12 
cells after exposure to a low concentration of MA (1 μM for 
72 h). Consistently, autophagic vacuoles surrounded dam-
aged mitochondria in MA-exposed cells. Moreover, PINK1 
gene silencing decreased Parkin recruitment to damaged 
mitochondria and the number of mitophagic vacuoles, and 
increased the proportion of damaged mitochondria and 
apoptotic cells after MA, suggesting that PINK1 and Parkin 
inhibition contributes to the pathophysiology of MA toxic-
ity. In line with this finding, it was shown that MA (10 mg/
kg, i.p. or 10 mg/kg, i.p. × 4)-induced decreases in Parkin 
protein and mRNA levels followed by reduced 26S protea-
some activity in the striatum of rats [20, 22]. In addition, 

Parkin overexpression in the nigrostriatal area with adeno-
associated viral vectors attenuated dopaminergic terminal 
damage induced by MA (7.5  mg/kg, i.p. × 4) in the stria-
tum [87]. Importantly, Lin et al. [24] found that a high MA 
concentration (1 or 2  mM) induced mitochondrial dys-
function and ultrastructural changes related to mitophagy, 
accompanied by sustained elevation of cleaved protein 
kinase Cδ (PKCδ), a persistently active form of PKCδ, in 
a rat mesencephalic dopaminergic neuronal cell line. In this 
study, PKCδ gene knockdown or overexpression of a cleav-
age resistant PKCδ mutant restored normal regulation of 
autophagy and protected dopaminergic neuronal cells from 
MA-induced apoptosis. These results suggest that PKCδ 
plays a role in the MA-induced deregulation of mitophagy. 
Taken together, mitophagy enables dopaminergic neurons 
to maintain normal mitochondrial function and attenuate 
MA neurotoxicity.

The constant cycles of mitochondrial fusion/fission 
allow cells to reorganize mitochondrial networks and 
sequester damaged mitochondrial components into daugh-
ter mitochondria that are removed by mitophagy [88, 89]. 
Two large GTPases, mitofusin 1 and mitofusin 2 medi-
ate the tethering of mitochondrial outer membranes [90], 
whereas optic atrophy 1 (OPA1) protein, a dynamin-like 
GTPase, promotes the fusion of mitochondrial inner mem-
branes [91]. Another large GTPase, dynamin-related pro-
tein 1 (Drp1), along with fission protein 1 (Fis1) mediates 
mitochondrial fission by forming an oligomeric ring that 
constricts to divide mitochondria [81, 92]. The balance 
between fusion and fission is critical for maintaining nor-
mal mitochondrial morphology and function. Thus, altered 
fusion/fission plays a role in the pathophysiology of various 
neurodegenerative diseases, including PD [93]. Excessive 
fission events, and the consequent mitochondrial fragmen-
tation, have been reported in a cybrid model of sporadic PD 
[94]. Similar findings have been reported in MA-exposed 
cells. Parameyong et al. [25] reported that exposure to MA 
(1.0 mM for 24 h) increased the levels of Fis1 protein and 
Drp1 oligomers in SH-SY5Y cells, however, neither OPA1 
nor mitofusin 1 levels were changed. In a follow-up study 
[26], mitochondrial translocation of Fis1 and Drp1 pre-
ceded mitochondrial fragmentation in MA (1.0  mM for 
24  h)-exposed SH-SY5Y cells, and these changes were 
dependent on the intracellular Ca2+ concentration. Con-
sistently, Tian et  al. [21] showed that exposure to MA 
(300 μM for 24 h) induced mitochondrial translocation and 
oligomerization of Drp1 and accompanying mitochondrial 
fragmentation in rat hippocampal neural progenitor cells. 
However, they suggested that MA-induced acceleration of 
mitochondrial fission is not related to intracellular Ca2+ 
concentration. Thus, the mechanism involved in acceler-
ating fission events might depend on MA concentration, 
although further data are needed.
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Mitochondria and MA‑Induced Oxidative Stress

Oxidative stress plays an important role in MA-induced 
dopaminergic toxicity. An increase in reactive oxygen spe-
cies (ROS) concentration due to increased ROS production 
and/or decreased antioxidant activity can cause oxidative 
stress [95]. Increased ROS concentration oxidizes biomol-
ecules, including lipids, proteins, and nucleic acids, lead-
ing to damage and malfunction of cellular components. In 
this respect, several studies have reported increased oxida-
tive stress markers in plasma or post-mortem brain tissue 
of MA users and abusers [96–98]. As discussed earlier, 
MA inhibits VMAT-2 and DAT, resulting in an excessive 
extravesicular cytosolic- or synaptic-DA in dopaminer-
gic neurons. Excess DA can be autoxidized to quinone or 
semi-quinone, which can generate a superoxide radicals, 
hydroperoxide, and further hydroxyl radicals [99, 100]. 
In addition, DA metabolism, which is mediated by mono-
amine oxidase (MAO), produces hydrogen peroxide as a 
by-product.

Mitochondria are a major site of ROS formation induced 
by MA [17, 70, 101]. Under physiological conditions, elec-
tron transport through the ETC is tightly coupled to ATP 
production, thus low levels of superoxide radicals are gen-
erated in normal cellular respiration. However, inhibiting 
ETC components can enhance the superoxide radical pro-
duction due to leaking electrons. In this regard, Sipos et al. 
[102] showed that weak inhibition (16 ± 2%) of complex I 
significantly increased ROS formation, but strong inhibi-
tion (>70%) of complex III or IV was needed to induce 
a significant increase in ROS formation in isolated nerve 
terminals. These results suggest that synaptosomal mito-
chondria are more sensitive to complex I inhibition than 
complex III or IV inhibition in producing ROS [103]. As 
described above, MA inhibits the expression and activ-
ity of ETC components (Table  1). Interestingly, Thrash-
Williams et  al. [101] have shown that a free radical scav-
enger, salicylic acid significantly attenuated MA (10  mg/
kg, i.p. × 2)-induced complex I inhibition. Considering that 
the exposure to hydrogen peroxide or oxygen free radicals 
induces a robust inhibition of ETC components [104], MA-
induced ETC inhibition produces ROS, which may further 
inhibit ETC components through positive feedback. Con-
sistently, several studies have shown that an MA-induced 
decrease in ΔΨm was accompanied by increases in mito-
chondrial oxidative stress markers in vitro [24, 75, 77] and 
in vivo [39, 41, 42].

In normal conditions, superoxide radicals generated by 
ETC components are efficiently scavenged by superoxide 
dismutase (SOD) to form hydrogen peroxide. Hydrogen 
peroxide can be metabolized into water and oxygen by 
catalase or peroxidases, mainly glutathione peroxidase in 
brain. Thus, an imbalance in the mitochondrial antioxidant 

system induces mitochondrial oxidative stress in various 
neurotoxic and neurodegenerative conditions. Numer-
ous studies have reported MA-induced increase in SOD 
activity in the nigrostriatal area [39, 105, 106]. Given the 
amount of evidence indicating a protective role of SOD 
overexpression in response to MA-induced neurotoxicity 
[107–110], an increase in SOD activity may be a compen-
satory response to superoxide radical production. Increased 
SOD activity should be followed by an anti-peroxide 
defense to remove hydrogen peroxide and block hydroxyl 
radical formation through Fenton’s reaction. However, sev-
eral studies have indicated that MA administration signifi-
cantly reduced the activity of glutathione peroxidase (GPx) 
[34, 39, 106, 111], the main hydrogen peroxide scaven-
ger in the brain. Especially, our previous in vivo [39] and 
in vitro [77] studies showed that MA-induced decrease in 
GPx activity was more pronounced in mitochondrial frac-
tion than in cytosolic fraction. In line with findings, sup-
plementing dietary selenium, a key element of GPx, miti-
gated dopaminergic neurotoxicity induced by MA [112], 
whereas selenium deficiency aggravated this neurotoxicity 
[34, 35]. Similar results have been reported in the postmor-
tem brains of MA abusers [113], showing that Cu, Zn-SOD 
activity was increased, but GPx activity was unchanged in 
the caudate nucleus. Therefore, an increase in SOD activ-
ity that is not accompanied by increased GPx activity may 
contribute to MA-induced mitochondrial oxidative stress. 
In addition, reduced glutathione (GSH) levels decreased, 
and oxidized glutathione (GSSG) levels increased in the 
striatum after MA binge exposure (10  mg/kg, i.p. × 4, at 
2-h intervals) [34, 114]. These MA-induced changes in glu-
tathione levels were also observed in the mitochondria of 
rat brain [115] and SH-SY5Y cells [77]. GSH is not only a 
GPx substrate, but it also maintains the protein thiol groups 
in a reduced form, allowing proteins to maintain normal 
function. In particular, considering that a decreased GSH/
GSSG ratio can inhibit complex I activity by modifying 
thiol residues [116, 117], maintaining glutathione homeo-
stasis in mitochondria may be critical to block mitochon-
drial dysfunction as well as mitochondrial oxidative stress 
in MA neurotoxicity. Interestingly, inhibiting PKCδ either 
pharmacologically or genetically restored glutathione 
homeostasis and GPx activity both in the mitochondrial 
and cytosolic fraction, and attenuated mitochondrial oxida-
tive stress [39, 42, 77]. Although these results need to be 
examined in MA-induced neurotoxicity, PKCδ inhibition 
has been reported to increase Nrf2 DNA binding activity 
and up-regulate the expression of glutathione-synthesizing 
enzyme, γ-glutamylcysteine ligase in response to neuro-
toxic trimethyltin insult [118]. Thus, PKCδ might medi-
ate oxidative damage and mitochondrial dysfunction by 
modulating the Nrf2-glutathione pathway in MA-induced 
neurotoxicity.
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Moreover, several reports have suggested that oxidative 
stress could directly mediate the alteration in mitochon-
drial dynamics in MA neurotoxicity. A previous in  vitro 
study by LaVoie et al. [119] reported that exposure to MA 
(10  μM) increased the levels of insoluble Parkin mono-
mer and aggregates, which resulted in reduced Parkin E3 
ligase activity. In this study, formation of DA quinone was 
critical for inhibiting Parkin activity. More specifically, DA 
quinones covalently bound to the cysteine thiol groups of 
Parkin and decreased its solubility and activity. Consist-
ently, increased Parkin conjugation to 4-hydroxy-2-nonenal 
(4-HNE) has been reported to accompany inhibited ubiqui-
tin-dependent 26S proteasome activity in the rat striatum as 
early as 1 h after the final MA injection (10 mg/kg, i.p. × 4, 
at 2-h intervals) [22]. In addition, a thiol-containing com-
pound, N-acetylcysteine (NAC) has been reported to atten-
uate the mitochondrial translocation and oligomerization of 
Drp1 induced by MA (300 μM for 24 h) in rat hippocampal 
neural progenitor cells [21]. Thus, mitochondrial oxidative 
stress could be both a cause and a consequence of disrupted 
mitochondrial function and dynamics.

Mitochondria and MA‑Induced Apoptosis

As mentioned above, MA exposure (administration) could 
induce apoptotic cell death in vitro and in vivo. It has been 
reported that MA administration increases the expression 
of pro-apoptotic proteins, such as Bax, Bad, and Bid [41, 
74, 120–122] and decreases the expression of anti-apop-
totic proteins, such as Bcl-2 and Bcl-xL [41, 120–122], in 
the brain. The increase in pro-apoptotic proteins can per-
meabilize the mitochondrial outer membrane by forming 
a multimeric channel complex [123]. Bax has also been 
suggested to bind to components of the permeability transi-
tion pore complex (PTPC) and promote the mitochondrial 
permeability transition. In addition, Bax could alter the 
mitochondrial membrane curvature and promote mitochon-
drial fission and consequent mitochondrial fragmentation 
[124]. The resulting mitochondrial membrane permea-
bilization (MMP) could dissipate ΔΨm and release mito-
chondrial IMS proteins, including cytochrome c and apop-
tosis-inducing factor (AIF) [123, 125]. Cytosolic release 
of cytochrome c is a key step in the caspase-dependent 
mitochondrial apoptotic pathway. Cytochrome c can be 
assembled into the apoptosome with apoptotic peptidase 
activating factor-1 (Apaf-1), deoxyadenosine triphosphate 
(dATP), and procaspase-9 and induce sequential activation 
of executioner caspases-3, -6, and -7. Regarding this topic, 
a number of studies have shown increase in cytochrome c 
release from mitochondria and consequent caspase activa-
tion following MA exposure in vitro [77, 126] and in vivo 
[39, 42, 74, 121, 127, 128]. In addition, it was reported that 

caspase-independent pathway is also been involved in the 
mitochondria-associated apoptosis after a toxic dose of MA 
(40 mg/kg, i.p.) in the striatum of mice [127].

PKCδ is one of the proteins cleaved by caspase-3. Cas-
pase-3-mediated proteolytic cleavage between the catalytic 
and regulatory domains can permanently activate PKCδ 
[129, 130]. In addition, PKCδ has been reported to trans-
locate into various cell organelles, including the mitochon-
dria, in the presence of apoptotic stimuli and mediate apop-
totic processes [131]. We recently reported that increased 
PKCδ cleavage and mitochondrial translocation of cleaved 
PKCδ were followed by mitochondrial dysfunction (i.e., 
reduced ΔΨm), mitochondrial oxidative stress, and apop-
totic changes in the striatum of mice following MA binge 
exposure [39, 41, 42, 132] or in SH-SY5Y cells following 
MA exposure (1.5 mM for 12 h) [77]. Interestingly, a PKCδ 
gene knockout inhibited ultrastructural mitochondrial dam-
age and pro-apoptotic changes induced by MA through 
activation of the PI3K/Akt signaling pathway [41]. These 
results were consistent with reports suggesting that PKCδ 
cleavage is a key event amplifying apoptotic cascades in 
dopaminergic neurotoxicity produced by 6-hydroxydopa-
mine [130] or dieldrin [133]. Therefore, PKCδ cleavage 
and mitochondrial translocation of cleaved PKCδ may rein-
force mitochondria-dependent apoptosis induced by MA.

Mitochondria and MA‑Induced 
Neuroinflammation

It has been widely recognized that mitochondrial impair-
ment and neuroinflammation are synergistically involved in 
the pathology of neurodegenerative diseases [134]. In addi-
tion, accumulating evidence has found crosstalk between 
mitochondrial dysfunction and neuroinflammation in dopa-
minergic neurotoxicity models. For instance, a mitochon-
drial complex I inhibitor, rotenone or 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), was reported to induce 
microglial activation and pro-inflammatory cytokines in 
the nigrostriatal area [135–139]. In the opposite direction, 
intrastriatal microinfusion of lipopolysaccharide (LPS), 
a powerful inflammogen, has been shown to inhibit mito-
chondrial complex I activity in the substantia nigra as well 
as striatum of rats [140, 141]. In these models, oxidative 
stress and pro-inflammatory cytokines have been suggested 
as important mediators of the crosstalk between mitochon-
drial impairment and neuroinflammation [138, 140–143].

Neuroinflammation may play an important pathophysi-
ologic role in MA-induced neurotoxicity. Neurotoxic doses 
of MA have been reported to induce microglial activation, 
as indicated by elevated expression of microglia-specific 
marker proteins and morphological changes in the nigros-
triatal area [38, 39, 41, 42, 122, 144, 145]. These findings 
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Fig. 1   The role of mitochondria in the neurotoxicity induced by 
MA. MA can be taken up into dopaminergic cells by DAT as a sub-
strate. Additionally, MA can diffuse into cells due to its lipophilicity 
[154]. In dopaminergic neurons, MA displaces the DA in the vesicles 
through VMAT-2, and then leads to an excess cytosolic DA, which 
can be released into synaptic cleft by reverse transport via DAT. 
Intracellular MA and excess cytosolic DA induce the reduction of 
ΔΨm by impairing mitochondrial energetics. Mitochondrial dysfunc-
tion together with reduced mitochondrial antioxidant defense can 
produce mitochondrial oxidative stress (OS), which, in turn, leads to 
further inhibition of mitochondrial function in a positive loop (+), 
and possibly alters mitochondrial dynamics. In addition, synaptic DA 

binds to pre- or post-synaptic DA receptors and can affect the mito-
chondrial function. MA-induced mitochondrial dysfunction can also 
trigger pro-apoptosis. Moreover, mitochondrial oxidative stress could 
induce neuroinflammation by stimulating microglial (MØ) transfor-
mation into pro-inflammatory M1 phenotype and by facilitating the 
membranous translocation of p47phox and assembly of NADPH oxi-
dase (PHOX). Mitochondrial translocation of PKCδ and its cleaved 
form might mediate the interplay between mitochondrial dysfunction, 
mitochondrial oxidative stress, neuroinflammation and pro-apoptotic 
changes. Finally, these signaling processes contribute to the neurode-
generation and behavioral impairments induced by MA
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agreed with a clinical study showing reactive microgliosis 
in the brains of MA abusers [146]. Specifically, expres-
sion of classical pro-inflammatory M1 microglial pheno-
type markers (CD16, CD32, CD68, and CD86) increased, 
whereas expression of alternative anti-inflammatory M2 
microglial phenotype markers (arginase-1, CD163, and 
CD206) tended to decrease, though not statistically signifi-
cantly in the striatum after MA binge exposure [38, 39, 42, 
147]. Consistently, increased levels of pro-inflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α) and 
interleukin-6 (IL-6), have been reported after a single dose 
of MA (10 or 30 mg/kg, i.p.) in the striatum of mice [148, 
149]. The involvement of neuroinflammation in MA neu-
rotoxicity can be further supported by evidence that MA-
induced dopaminergic toxicity was attenuated by the micro-
glia inhibitor minocycline [150, 151] or by non-steroidal 
anti-inflammatory drugs, ketoprofen [152] and ibuprofen 
[153]. Although, little is understood about the direct link 
between mitochondrial impairment and neuroinflammation 
in MA neurotoxicity, PKCδ might be an important media-
tor. Our previous study [39] showed that restoring mito-
chondrial function and attenuating mitochondrial oxidative 
stress by PKCδ gene knockout blocked microglial activa-
tion and increased M1 phenotype markers in the striatum 
after repeated MA administration (8 mg/kg, i.p. × 4, at 2-h 
intervals). In this study, mitochondrial oxidative stress and 
mitochondrial dysfunction preceded microglial activation, 
suggesting that mitochondrial dysfunction could promote 
neuroinflammatory changes through PKCδ-related signal-
ing. A similar result was achieved in the striatum after a 
single MA injection (35  mg/kg, i.p.) showing that mito-
chondrial translocation of cleaved PKCδ and mitochondrial 
dysfunction are associated with microglial activation [42]. 
Further investigations are needed to determine the specific 
mediators between mitochondrial impairment and neuroin-
flammation in dopaminergic toxicity induced by MA.

Conclusion and Future Directions

Mitochondrial impairment is implicated in the pathophysi-
ology of numerous neurodegenerative diseases. Mitochon-
drial changes have also been suggested to play a critical 
role in MA neurotoxicity. These changes include disrupted 
mitochondrial energetics (i.e., impaired Krebs’ cycle and 
ETC, and the consequent decrease in ΔΨm and ATP pro-
duction) and altered mitochondrial dynamics (i.e., imbal-
ances between mitochondrial biogenesis and mitophagy, 
and between mitochondrial fusion and fission) in vivo and 
in  vitro. In addition, mitochondrial impairment facilitates 
oxidative stress, pro-apoptotic processes, and neuroinflam-
matory events, which may further impair the mitochondrial 
function in a positive feedback manner after MA. Recent 

evidence has suggested that PKCδ might mediate this posi-
tive feedback interaction (Fig.  1). The results obtained so 
far in  vivo and in  vitro can help to elucidate the cellular 
and molecular mechanisms associated with mitochondria in 
MA-induced dopaminergic toxicity. Moreover, considering 
the importance of mitochondrial impairment in MA neuro-
toxicity, modulating mitochondrial function and dynamics 
may be useful targets for the pharmaco-therapeutic inter-
ventions that can prevent or attenuate acute or chronic 
dopaminergic toxicity induced by MA.
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