
The amphetamines, including amphetamine 
(AMPH), methamphetamine (METH) and 3,4-
methylenedioxymethamphetamine (MDMA), 
are among abused drugs in the US and through-
out the world. Their abuse is associated with 
severe neurologic and psychiatric adverse events 
including the development of psychotic states. 
These neuropsychiatric complications might, 
in part, be related to drug-induced neurotoxic 
effects, which include damage to dopaminergic 
and serotonergic terminals, neuronal apoptosis, 
as well as activated astroglial and microglial 
cells in the brain. The purpose of the present 
review is to summarize the toxic effects of 
AMPH, METH and MDMA. The paper also 
presents some of the factors that are thought to 
underlie this toxicity. These include oxidative 
stress, hyperthermia, excitotoxicity and various 
apoptotic pathways. Better understanding of the 
cellular and molecular mechanisms involved in 
their toxicity should help to generate modern 
therapeutic approaches to prevent or attenuate 
the long-term consequences of amphetamine use 
disorders in humans.
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AMPHETAMINE

Amphetamine (AMPH) is a psychostimulant that 
belongs to widely used illegal drugs in the world. 
AMPH is a popular drug of abuse in Australia (Bartu 
et al., 2004), Belgium (Raes and Verstraete, 2005), 
Brazil (Silva and Yonamine, 2004), Switzerland 
(Augsburger et al., 2005) and UK (Wylie et al., 
2005). AMPH is a common drug of abuse in 
Sweden and other northern European countries 
(Jones, 2005; Gustavsen et al., 2006). In the USA, 
non-medical use of medications prescribed for 
ADHD treatment, including those that contain 
AMPH, is high among high school and college 
students (McCabe et al., 2004; 2005). It has been 
reported that the abuse of these drugs is second 
only to marijuana (Brown et al., 2001). 
   AMPH abuse is associated with very seri-
ous harms. These include increased psychologi-
cal morbidity, dependence and health problems. 
For example, acute AMPH side-effects include 
tachycardia, hypertension, hyperthermia, increased 
muscle tention, liver and renal failure, nausea, 
blurred vision, ataxia, anxiety, psychosis and sei-
zures (Kalant and Kalant, 1975; Janowsky and 
Risch, 1979; Alldredge et al., 1989; Murray, 1998). 
Other severe and fatal AMPH intoxications have 
also been reported (Ginsberg et al., 1970; Kalant 
and Kalant, 1975; Salanova and Taubner, 1984; De 
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Letter et al., 2006; Steentoft et al., 2006). Chronic 
AMPH abuse is associated with impairments in 
attention and memory, problems with learning, as 
well as compromised decision making (McKetin 
and Mattick, 1997; Rogers et al., 1999; Ornstein et 
al., 2000). Some of these neuropsychiatric compli-
cations are thought to be related to AMPH-induced 
neurotoxic effects which consist of decreases in 
tyrosine hydroxylase (TH) activity (Ellison et 
al., 1978), long-term dopamine (DA) depletion 
(Wagner et al., 1980a), loss of dopamine transport-
ers (DAT) (Scheffel et al., 1996; Krasnova et al., 
2001), as well as decreases in vesicular monoamine 
transporter proteins (Krasnova et al., 2001). In 
addition to its effects on monoaminergic terminals, 
AMPH can cause cell death of primary cortical 
cells, TH-positive mesencephalic neurons, and of 
PC12 cells in vitro (Stumm et al., 1999; Lotharius 
and O'Malley, 2001; Oliveira et al., 2002) as well 
as degeneration of cell bodies in the cortex of 
AMPH-treated rodents (Jakab and Bowyer, 2002). 
The drug can also cause the activation of caspase-
3 and appearance of TUNEL-positive cells in the 
striatum (Krasnova et al., 2005). Calbindin- and 
DA- and cAMP-regulated phosphoprotein, Mr 32 
kD (DARPP-32)-positive medium spiny projection 
neurons, but not choline acetyltransferase (ChAT)-, 
parvalbumin- or somatostatin-positive interneurons 
undergo AMPH-induced apoptosis (Krasnova et 
al., 2005). Although the mechanisms for AMPH-
mediated toxicity are not completely clear, they 
appear to include uptake into DA terminals, DA 
release, oxidative stress and the activation of p53-
dependent and mitochondria-mediated cell death 
pathways. Herein, the data supporting these mecha-
nisms in AMPH toxicity are reviewed.

AMPH Toxicity Involves ROS Formation 
and ROS-mediated Transcriptional Changes.
AMPH-induced redistribution of DA from synaptic 
vesicles to the cytosol followed by its release to 
the extracellular space by reverse transport through 
DAT causes increased DA levels in the synap-
tic cleft (Sulzer et al., 1995). DA metabolism is 
accompanied by the production of hydroxyl (Huang 
et al., 1997) and superoxide (Krasnova et al., 2001) 
radicals that participate in the toxic effects of the 
drug via free radical-mediated destruction of mono-
aminergic terminals (Huang et al., 1997; Cadet 

and Brannock, 1998; Wan et al., 2000; Krasnova 
et al., 2001). This occurs because reactive oxygen 
species (ROS) induced by AMPH administration 
can exceed the compensating abilities of anti-
oxidant enzymes such as superoxide dismutases 
(SODs), catalase and glutathione peroxidase (Cadet 
and Brannock, 1998). The possible involvement 
of superoxide radicals in AMPH toxicity is also 
supported by the findings that transgenic mice 
that overexpress CuZnSOD are partially protected 
against the toxic effects of the drug on dopaminer-
gic systems (Krasnova et al., 2001).  
   Because ROS play a role in cellular signaling pro-
cesses, including the regulation of transcriptional 
factors (Poli et al., 2004), induction or suppression 
of transcription factors with subsequent activation 
or repression of genes that encode proteins involved 
in various neuronal functions might be critical steps 
in AMPH-induced cascades of toxic events. These 
ideas are supported by the demonstration that 
administration of AMPH causes activation of AP-1 
transcription factors (Persico et al., 1995; Ferguson 
et al., 2003; Milanovic et al., 2006). The possi-
bility that superoxide radicals might be involved 
in AMPH-induced transcriptional responses has 
been tested using microarray analyses (Krasnova 
et al., 2002). This allowed the identification of 37 
genes that show superoxide-mediated responses. 
Among these are genes that belong to classes of 
transcription factors, growth factors, heat shock 
proteins (HSPs), and xenobiotic metabolism. In 
response to neuronal damage, organisms initiate 
and elaborate events that trigger neuroprotective 
pathways that serve to minimize or prevent dam-
age; they also function to increase the chance of 
functional recovery (Wieloch and Nikolich, 2006). 
These pathways include the increased synthesis and 
release of growth factors and cytokines such as the 
neuronal protein, activin A (Werner and Alzheimer, 
2006), which is activated by AMPH in a superox-
ide-responsive manner (Krasnova et al., 2002). The 
participation of activin A in protective mechanisms 
is illustrated by the reports that it reduces MPP+-
induced cellular damage to DA neurons in vitro 
(Krieglstein et al., 1995) and rescues striatal neu-
rons from excitotoxic lesioning with quinolic acid 
(Hughes et al., 1999). Another AMPH-responsive 
superoxide-mediated gene is macrophage colony-
stimulating factor which is involved in the pro-
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liferation and migration of activated microglia 
into injured sites of the brain (Imai and Kohsaka, 
2002). Additional genes whose transcript levels are 
induced by AMPH code for HSPs such as HSP110 
and HSC70. HSPs have been shown to protect 
cells against oxidative damage (Papp et al., 2003; 
Macario and Conway de Macario, 2005).

AMPH Toxicity Involves Activation 
of the p53-mediated Cell Death Pathway.
ROS-induced stresses are known to be associated 
with DNA damage and p53 accumulation in vitro 
(Lombard et al., 2005). P53 activation has been 
shown to participate in events that cause neuronal 
apoptosis (Culmsee and Mattson, 2005). This is 
thought to be related to the influence exerted by 
p53 on the expression of the Bcl-2 family of pro-
teins which include the pro-apoptotic protein, Bax 
and the anti-apoptotic protein, Bcl-2 (Moll et al., 
2005; Chowdhury et al., 2006). Specifically, p53 
causes upregulation of Bax and downregulation of 
Bcl-2 (Moll et al., 2005; Chowdhury et al., 2006). 
As reported above, AMPH has been shown to 
cause neuronal cell death in various brain regions 
(Jakab and Bowyer, 2002; Krasnova et al., 2005). 
The AMPH-induced neuronal apoptosis has been 

recently shown to involve the activation of the 
p53 pathway with secondary increases in Bax 
levels and decreases in Bcl-2 levels in the mouse 
striatum (Krasnova et al., 2005). The role of Bax 
activation in AMPH-related apoptosis was further 
supported by experiments showing that Bax-defi-
cient mice were partially resistant to drug-induced 
cell death (Krasnova et al., 2005). Figure 1 shows 
a schematic representation  of the mechanisms that 
may underlie AMPH-related apoptosis and DA 
terminal degeneration.

AMPH Treatment and Temperature Regulation
Temperature regulation appears to be also an 
important factor in the toxic responses to AMPH. 
In rodents, the psychostimulant was shown to 
produce biphasic effects with low doses (≤ 2.5 
mg/kg) inducing hypothermia and higher doses (≥ 
5 mg/kg) causing hyperthermia at ambient tem-
perature above 20ºC (Seale et al., 1985; Krasnova 
et al., 2001; Baker and Meert, 2003). This effect 
was found to be dose-dependent, with the degree 
of hyperthermia correlating to AMPH and DA 
levels in rat striatal microdialysate (Clausing and 
Bowyer, 1999). Several studies have also hinted to 
connections between hyperthermic and neurotoxic 

FIGURE 1   Overview of the molecular mechanisms involved in AMPH neurotoxicity. Oxidative stress, p53 and mito-
chondrial pathway play an essential role in the AMPH-induced neuronal apotosis and DA terminal degeneration.
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actions of AMPH (Clausing et al., 1995; Miller 
and O'Callaghan, 1996). Conditions that reduce 
or prevent AMPH-induced increases in core body 
temperature are, at least, partially neuroprotective 
(Clausing et al., 1995; Miller and O'Callaghan, 
1996). In contrast, hyperthermia could exacerbate 
AMPH toxicity because the formation of free radi-
cals in the brain is elevated by temperature increase 
(Kil et al., 1996) and because hyperthermia also 
potentiates the cytotoxic effects of ROS (Lin et 
al., 1991). These ideas are also supported by the 
report that hyperthermia significantly increases DA 
quinone formation (LaVoie and Hastings, 1999) 
since quinones derived from DA have the ability 
to inhibit proteasome (Zafar et al., 2006) which is 
involved in detoxification mechanisms.
   Although AMPH-induced increases in temperature 
are thought to be involved in the toxicity of the drug, 
the manner by which the temperature is induced 
remains to be determined. DA release (Clausing 
and Bowyer, 1999) and D1 receptor stimulation 
(Sanchez, 1989; Zarrindast and Tabatabai, 1992; 
Verma and Kulkarni, 1993) have been implicated. 
The observations that animals with severe hyper-
thermia released more DA in the striatal extracellu-
lar space provide partial support for this contention 
(Clausing and Bowyer, 1999). Moreover, the idea 
is also supported by the reports that hyperthermia 
is induced by administration of the D1 agonist SKF 
38393 in mice (Sanchez, 1989; Zarrindast and 
Tabatabai, 1992; Verma and Kulkarni, 1993), the 
effect that could be blocked by D1 antagonist SCH 
23390 (Sanchez, 1989; Zarrindast and Tabatabai, 
1992). It has to be pointed out that since AMPH can 
cause release of other monoamines (Seiden et al., 
1993), their possible involvement also needs to be 
considered. For example, lesions of ventral norepi-
nephrine bundle innervating the hypothalamus and 
limbic system cause attenuation of AMPH-induced 
hyperthermia in rats (Kostowski et al., 1982). 
   In addition to DA release, AMPH-induced produc-
tion of free radicals might also contribute to ther-
mal instability (Krasnova et al., 2001). Mice that 
overexpress the antioxidant enzyme, CuZnSOD, 
in the brain show no hyperthermic responses after 
AMPH treatment and are protected against long-
term neurotoxic drug effects (Krasnova et al., 
2001). Thus, the possibility of complex interactions 
between thermoregulation and free radical load in 

the long-term neurotoxicity induced by this illicit 
drug needs to be considered. 
   It is also of interest to note that various strains 
of mice show different hyperthermic responses 
to AMPH. Specifically, psychostimulants caused 
substantial hyperthermia in CD-1 (Krasnova et 
al., 2001), Swiss-Webster (Craig and Kupferberg, 
1972), DBA/2 (Seale et al., 1985), and BALB/c 
mice (Jori and Rutczynski, 1978), while C57BL/6 
(Seale et al., 1985; Krasnova et al., 2001) and C3H 
animals (Jori and Rutczynski, 1978) had low to 
moderate transient temperature increase. These 
differences in temperature responses may help to 
further dissect the role of hyperthermia in AMPH 
toxicity. For example, it seems there is no simple 
algorithm to predict toxicity based on temperature 
responses because CD-1 mice are more resistant to 
AMPH neurotoxicity than C57BL/6 mice in spite 
of showing greater and longer-lasting hyperthermia 
than C57BL/6 mice (Krasnova et al., 2001). 
   Finally, the issues of temperature regulation have 
major clinical implications because AMPH can 
cause fatal hyperpyrexia in humans (Ginsberg et al., 
1970; Kalant and Kalant, 1975; Callaway and Clark, 
1994; De Letter et al., 2006). Thus, understanding 
of the root causes of AMPH-induced hyperthermia 
might help to develop therapeutic approaches that 
can prevent or attenuate the disastrous effects of 
this drug when taken in high doses. 

METHAMPHETAMINE

Metamphetamine (METH, Speed, crank) is abused 
worldwide due to its powerful stimulant proper-
ies that cause the user to feel "high" and to have 
increased energy (McCann et al., 1998b; Sekine 
et al., 2001; Farrell et al., 2002). METH is easily 
available because it can be synthesized cheaply and 
distributed to various communities throughout the 
world. Presently, there is widespread abuse in the 
United States where it has migrated from the West 
Coast to other states (Puder et al., 1988; Derlet 
et al., 1989; Cho and Melega, 2002). METH can 
be abused via multiple routes which include oral, 
intravenous and smoking administration. In addi-
tion to its euphorigenic effects, METH can also 
cause anxiety, increased agitation, delirium, psy-
chotic states, cognitive and psychomotor impair-
ments, seizures, and death (Wilson et al., 1996; 
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Lan et al., 1998; Buffenstein et al., 1999; Yui et 
al., 1999; Simon et al., 2000; Volkow et al., 2001a; 
London et al., 2004; Dore and Sweeting, 2006). 
Cerebral vasculitis, cerebrovascular accidents due 
to hemorrhage or vasospasm, and cerebral edema 
have also been reported in METH abusers (Chynn, 
1968; Salanova and Taubner, 1984). The drug can 
also cause neurodegenerative changes in the brains 
of human addicts. These pathological changes 
include loss of striatal DAT observed in positron 
emission tomographic (PET) studies (Volkow et 
al., 2001b; Sekine et al., 2003) and in post-mortem 
investigations, loss of serotonin transporters (5-
HTT) (Sekine et al., 2006), decrease in the levels 
of DA, serotonin (5-HT) and their metabolites 
(Wilson et al., 1996). A number of studies have 
documented that METH can cause long-term dam-
age to presynaptic dopaminergic and serotonergic 
terminals in rodents (Ricaurte et al., 1980; Wagner 
et al., 1980b). More recently, it has also been shown 
that the drug can cause death of cell bodies both in 
vitro (Cadet et al., 1997; Stumm et al., 1999) and in 
vivo (Eisch and Marshall, 1998; Deng et al., 1999; 
Deng and Cadet, 2000; O'Dell and Marshall, 2000). 
In what follows, we discuss some of the mecha-
nisms that have been implicated in METH-induced 
neurodegenerative effects. 

Role of Oxidative Stress 
in METH-induced Toxicity
The biochemical actions of the drug depend on 
its entry into monoaminergic terminals (Berger 
et al., 1992; Iversen, 2006), followed by entry 
into monoaminergic vesicle consequent to its 
interaction with vesicular monoamine transport-
ers (Sulzer et al., 1995). This is followed by 
displacement of monoamines into the cytoplasm 
of the terminals and METH-induced monoamine 
release into respective synaptic clefts (Baldwin 
et al., 1993; Marshall et al., 1993; Cubells et al., 
1994; Sulzer et al., 1995; Schwartz et al., 2006). 
METH neurotoxicity appears to depend on both, 
DA released within terminals and on DA released 
in synaptic clefts (Cadet and Brannock, 1998). 
These suggestions are supported by reports that 
DAT knockout mice are resistant to METH-
induced degeneration of DA axons (Fumagalli 
et al., 1998) and by observations that psycho-
stimulant toxicity depends on quinone forma-

tion consequent to increased DA levels within 
nerve terminals (LaVoie and Hastings, 1999). 
METH-related quinone formation is thought to 
be associated with the generation of superoxide 
radicals and hydrogen peroxide during quinone 
redox cycling (Stokes et al., 1999; Miyazaki et 
al., 2006). A role for oxidative mechanisms in 
the neurotoxic effects of the drug is supported 
by observations that administration of N-acetyl-
L-cysteine, ascorbic acid or vitamin E was able 
to protect against METH-induced destruction of 
monoaminergic terminals (Wagner et al., 1985; 
De Vito and Wagner, 1989; Fukami et al., 2004). 
In addition, selenium and melatonin can also 
provide protection against METH toxicity (Ali et 
al., 1999; Imam and Ali, 2000). The participation 
of superoxide radicals in the neurotoxic effects 
of METH on DA nerve terminals was tested by 
injecting METH to transgenic mice that overex-
press the human CuZnSOD gene (Cadet et al., 
1994a; Hirata et al., 1996; Jayanthi et al., 1998). 
These mice have much higher CuZnSOD activity 
than wild-type animals from similar backgrounds 
(Jayanthi et al., 1998; Jayanthi et al., 1999) and 
were indeed protected against the toxic effects 
of the drug. In contrast, inhibition of SOD by 
diethyldithiocarbamate potentiates the nefarious 
effects of METH (De Vito and Wagner, 1989). 
Furthermore, bromocriptine, which scavenges 
hydroxyl radicals, was also able to attenuate 
METH-induced DA depletion in mice (Kondo et 
al., 1994). When taken together, these observa-
tions support the notion that DA release caused 
by METH is accompanied by redox cycling of 
dopaquinone and consequent formation of oxy-
gen-based radicals such as superoxide radicals. 
Reports that METH can induce changes in the 
levels of glutathione (Harold et al., 2000) and 
of antioxidant enzymes (Jayanthi et al., 1998), 
increase lipid peroxidation (Jayanthi et al., 1998; 
Gluck et al., 2001), and induce the formation of 
protein carbonyls (Gluck et al., 2001) provide 
further support for the thesis that oxygen-based 
radicals are involved in METH-induced toxicity 
(Cadet and Brannock, 1998). 

METH Toxicity and Excitotoxicity
METH-induced neurotoxicity also appears to occur 
via excitotoxic damage secondary to glutamate 
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release and activation of glutamate receptors. 
Glutamate toxicity is dependent, in part, on the pro-
duction of nitric oxide (NO) (Dawson and Dawson, 
1998; Chung et al., 2005). The idea of the involve-
ment of glutamate in METH toxicity is supported 
by observations that METH can cause glutamate 
release in the brain (Nash et al., 1988; Baldwin et 
al., 1993; Marshall et al., 1993; Abekawa et al., 
1994; Mark et al., 2004). In addition, some glu-
tamate antagonists have been shown to attenuate 
METH-induced dopaminergic toxicity (Sonsalla 
et al., 1989; Battaglia et al., 2002) (see later dis-
cussion on temperature). Glutamate-mediated NO 
formation appears to also be involved in METH 
toxicity because knockout mice that are deficient in 
either neuronal (nNOS) or inducible (iNOS) nitric 
oxide synthase (NOS) are resistant to drug-induced 
toxic damage to monoaminergic terminals (Itzhak 
et al., 1998). These data have solidified the argu-
ment for a role of the glutamate/NO pathway in 
METH neurotoxicity (Itzhak et al., 1998; Imam et 
al., 2001; Itzhak and Ali, 2006). Finally, various 
nNOS inhibitors, which do not affect hyperthermia, 
can also protect against destruction of monoaminer-
gic axons caused by METH administration (Itzhak 
et al., 2000; Sanchez et al., 2003). In addition to 
their roles in the damage of monoaminergic ter-
minals, oxygen-based radicals and NO appear to 
be involved in METH-related cell death because 
CuZnSOD transgenic mice show partial protection 
against drug-induced apoptosis (Deng and Cadet, 
2000). Moreover, death of rat fetal mesencephalic 
cells caused by METH treatment was abrogated by 
the use of NOS inhibitors (Sheng et al., 1996).

Role of Thermal Instatibility in METH Toxicity
There is substantial evidence that hyperthermia 
participates in METH-induced toxicity on mono-
aminergic systems. Manipulations that result in 
higher temperatures cause increases in METH 
toxicity, whereas those that decrease temperatures 
have been shown to provide some degree of protec-
tion (Bowyer et al., 1994; Miller and O'Callaghan, 
1994; Albers and Sonsalla, 1995; Farfel and Seiden, 
1995). The potentiative effects of hyperthermia 
might occur through increased formation of DA-
dependent reactive oxygen species. In contrast, 
there are pharmacological agents that block METH 
toxicity without influencing the thermal responses 

in animals. For example, inhibition of nNOS blocks 
METH toxicity without altering the hyperthermic 
response (Itzhak et al., 2000; Sanchez et al., 2003). 
DA uptake blockers also protect in a fashion that 
appear to be independent of any effects on tempera-
ture (Callahan et al., 2001). 
   In addition to its effects on monoaminergic ter-
minals, METH can also cause cell death. Potential 
protective effects of various genetic and phar-
macological manipulations have been tested in 
that model. For example, knockout mice that are 
partially deficient of c-Jun show protection against 
METH-induced neuronal apoptosis, an effect that 
is independent of hyperthermia (Deng et al., 
2002b). Intracerebral injection of neuropeptide Y 
(NPY) has recently been shown to cause attenu-
ation of the apoptotic effects of the drug in mice 
(Thiriet et al., 2005). Because NPY is involved 
in thermoregulation (Richard, 1995; Levine et 
al., 2004) and because METH-related increases 
in body temperature are thought to participate in 
METH toxicity (Cadet et al., 2003, for review), 
the possibility that NPY might have prevented 
drug-induced hyperthermia was tested (Thiriet 
et al., 2005). NPY was found to attenuate body 
temperature increases after the second of the four 
METH injections but not during the later phases of 
hyperthermia (Thiriet et al., 2005). These observa-
tions suggest that NPY-induced protection is, in 
part, dependent on its effects on body temperature. 
It appears that METH-related changes in body 
temperature participate, but are not essential in the 
manifestations of drug toxicity. 

Microglial Reactions and METH Toxicity
Microglial cells are the major immunocompetent 
cells in the brain. They express chemokines, cyto-
kines and their receptors. Under normal conditions, 
these cells provide extensive and continuous sur-
veillance of their cellular environment (Raivich, 
2005). Microglial cells are activated by various 
types of pathological states including infectious 
processes (Rock et al., 2004) and neural injuries 
(Ladeby et al., 2005). This activation includes 
dramatic changes in appearance, migration to the 
site of the damage, and phagocytosis of dying 
and dead cells. Microglia can also produce small 
signaling molecules, called cytokines, to trigger 
astrocytes to respond to the injury site. Recently, 
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reactive microgliosis has been implicated in a num-
ber of neurological disorders including Alzheimer's 
(Xiang et al., 2006) and Huntington's (Sapp et al., 
2001) diseases. 
   Evidence accumulating from several laborato-
ries has recently implicated reactive microglial 
cells as culprits in the manifestation of METH 
toxicity. Asanuma et al. (2003) reported that the 
non-steroidal anti-inflammatory drug, ketoprofen, 
caused protection against METH-induced dopa-
minergic toxicity and suppressed drug-mediated 
microgliosis. Thomas and colleagues (2004) sub-
sequently reported that METH caused dose-depen-
dent microglial activation which coincided with 
DA terminal degeneration. LaVoie et al. (2004) 
have also provided evidence that microgliosis 
precedes METH-induced pathological states in 
striatal dopaminergic terminals. More importantly, 
manipulations such as the use of MK-801 and dex-
tromethorphan which protect against METH toxic-
ity also inhibit microglial activation (Thomas and 
Kuhn, 2005). In contrast, minocycline has been 
reported to block microglial activation without 
providing protection against METH-induced dam-
age (Sriram et al., 2006). Microglial cells might 
potentiate drug-related damage by releasing toxic 
substances such superoxide radicals and NO which 
have already been implicated in METH neurotox-
icity (see discussion above). When taken together, 
these observations suggest that identifying the 
specific role that microglial cells play in DA ter-
minal degeneration might help to develop specific 
therapeutic approaches for patients who have been 
exposed to METH.

Involvement of AP-1 Related Transcription 
Factors in METH-induced Neurotoxicity
The accumulated evidence had suggested that 
some effects of oxygen-based radicals might be 
mediated by activation of AP-1 transcription fac-
tors (Dalton et al., 1999). Tests for the possibility 
that METH toxicity might also be associated with 
variations in the expression of these proteins have 
revealed changes in the expression of a number 
of AP-1 related genes within 2 hours after drug 
administration (Cadet et al., 2001). These include 
up-regulation of c-jun, c-fos, jun B, as well as jun 
D (Cadet et al., 2001). These changes are probably 
related to METH-induced generation of free radi-

cals. ROS such as hydroxyl and superoxide radicals 
can induce the expression of many genes via their 
regulation of AP-1 transcription factors (Dalton et 
al., 1999). The role for c-fos in METH-induced 
neuropathological changes has been confirmed by 
using c-fos +/- mice which show increased degen-
eration of DA terminals and increased cell death 
after psychostimulant treatment (Deng et al., 1999). 
These observations suggest a protective role for c-
fos against METH damage. Some of the factors that 
might be involved in causing this partial protection 
include integrins that belong to cell adhesion recep-
tors and are also involved in the regulation of signal 
transduction (Gilcrease, 2006). This idea is sup-
ported by the evidence of decreased basal levels of 
integrin expression in c-fos +/- mice and the further 
reduction of these receptors in response to toxic 
doses of METH (Betts et al., 2002). This conclu-
sion is further supported by the observations that 
integrins can promote cell survival after injury and 
apoptotic insults via signaling through the PI3K-
Akt pathway which leads to BAD phosphorylation, 
therefore reducing BAD ability to block the anti-
apoptotic effects of Bcl-2 (Martin and Vuori, 2004; 
Gilcrease, 2006). In contrast, inhibition of integrins 
increases apoptotic cell death (Martin and Vuori, 
2004; Gilcrease, 2006).
   Because c-jun knockout mice show partial protec-
tion against the adverse effects of METH (Deng et 
al., 2002b), it is likely that c-jun is involved in the 
pro-death effects of the drug. Moreover, because 
the c-jun knockout mice and their wild-type coun-
terparts show similar degree of METH-induced 
dopaminergic toxicity, c-jun appears to only be 
involved in the mediation of neuronal apoptosis in 
cells postsynaptic to DA terminals.   
 
Role of DNA Damage in METH-induced 
Toxicity
As mentioned above, METH has been shown to 
cause neuronal apoptosis in several brain regions 
(Deng et al., 2001). Because apoptosis is associ-
ated with DNA damage, it was thought possible that 
administration of the drug might trigger responses 
meant to repair the METH-induced DNA dam-
age. Microarray analyses have indeed revealed 
that METH administration caused changes in the 
expression of several genes that participate in DNA 
repair processes (Cadet et al., 2002). These changes 
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are probably related to METH-induced prooxidant 
states because oxidative stress can cause single and 
double DNA strand breaks (Li and Trush, 1993). 
These breaks can be repaired via base excision 
repair (BER), nucleotide excision repairs (NER), 
mismatch repair (MMR), and DNA damage rever-
sal (Petit and Sancar, 1999; Hsieh, 2001; Nilsen and 
Krokan, 2001). Thus, the observations that METH 
treatment can cause upregulation of APEX, PolB, 
and LIG1 suggest that these changes might be com-
pensatory increases aimed at counteracting METH-
mediated ROS-induced DNA damage through the 
BER pathway. If the psychostimulant can cause 
similar DNA damage in humans, these observations 
might offer a partial explanation for the develop-
mental abnormalities observed in babies born of 
METH abusing mothers (Smith et al., 2006).

Involvement of Mitochondrial Death Pathway 
in METH-induced Apoptosis
Another interesting group of proteins that are dif-
ferentially regulated by METH includes Bcl-2 fam-
ily (Stumm et al., 1999; Cadet et al., 2001; Jayanthi 
et al., 2001). Specifically, METH caused upregula-
tion of pro-apoptotic proteins, BAX and BID, and 
downregulation of the anti-death proteins, Bcl-2 and 
Bcl-XL. The changes in pro-death proteins are con-
sistent with observations that METH administration 
is associated with release of mitochondrial contents 
into the cytosol (Deng et al., 2002a; Jayanthi et al., 
2004). These include cytochrome c and apoptosis 
inducing factor (AIF). When taken together with 
the recent in vitro demonstration that METH can 
cause release of cytochrome c from mitochondria, 
activation of caspases 9 and 3, as well as activa-
tion of DFF40 and its transit to the nucleus (Deng 
et al., 2002a), the in vivo data implicate a formal 
role of mitochondria in METH-induced neuronal 
degeneration. Other factors released from mito-
chondria such as Smac/DIABLO, endonuclease G, 
and AIF also participate in dismantling cells during 
apoptosis (Ravagnan et al., 2002). These proteins, 
including AIF and Smac/DIABLO, have now been 
shown to be involved in METH-induced apoptosis 
(Jayanthi et al., 2004). Their release is followed by 
activation of caspase 3 and the breakdown of sever-
al structural cellular proteins (Jayanthi et al., 2004). 
Thus, these observations implicate the mitochon-
drial death pathway as a major player in METH-

related cell death in the rodent brain (Cadet et al., 
2005). This suggestion is supported by the fact that 
overexpression of Bcl-2 can protect against drug-
induced apoptosis (Cadet et al., 1997).  

Involvement of the Endoplasmic Reticulum 
(ER)-dependent Death Pathway in METH-
induced Apoptosis
In addition to its effects on mitochondria, METH-
induced oxidative stress appears to also cause dys-
functions of other organelles such as the endoplas-
mic reticulum (ER) (McCullough et al., 2001). The 
ER helps to maintain cellular homeostasis by regu-
lating calcium signaling (Ferri and Kroemer, 2001). 
Dysregulation of intracellular calcium homeostasis 
can cause ER stress and ER-mediated apoptosis 
(Paschen, 2001). ER stress and calcium dysregula-
tion appear to participate in METH-induced cell 
death because apoptotic doses of the drug can 
cause activation of calpain, a calcium-responsive 
cytosolic cysteine protease (Murachi et al., 1980), 
which is involved in ER-dependent cell death 
(Nakagawa and Yuan, 2000). A role for the ER 
in METH toxicity is supported by the fact that 
apoptotic doses of METH (Jayanthi et al., 2004) 
also influence the expression of proteins, such as  
caspase-12, GRP78/BiP (glucose-regulated pro-
tein/immuno-globulin heavy chain binding protein) 
and CHOP/GADD153 (C/EBP homology protein/ 
growth arrest and DNA damage 153) that par-
ticipate in ER-induced apoptosis (Zinszner et al., 
1998). The observed ER stress in METH-induced 
neurotoxicity might be secondary, in part, to direct 
effects of the psychostimulant (Asanuma et al., 
2000), to METH-mediated oxidative stress (Cadet 
et al., 1994a; Cadet and Brannock, 1998; Jayanthi 
et al., 1998), and to shifts in BAX/Bcl-2 ratios 
induced by the drug (Jayanthi et al., 2001).   

Involvement of the Fas/Fas Ligand Death 
Pathway in METH-induced Apoptosis
In addition to the mitochondrial death pathway, 
cell death can occur consequent to activation of 
Fas receptors by Fas ligand (FasL) (Barnhart et al., 
2003; Choi and Benveniste, 2004). FasL (TNFSF6) 
(Li-Weber et al., 1999; Li-Weber and Krammer, 
2002; Droin et al., 2003) is a member of the TNF 
superfamily of cytokines (Locksley et al., 2001) and 
is involved in causing apoptosis in various models 
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of neuronal injury (Qiu et al., 2002). METH was 
shown to increase the expression of FasL (Jayanthi 
et al., 2005; reviewed in Cadet et al., 2005). It was 
also shown that METH can induce cleavage of cas-
pase 8, which is a known participatant in the Fas 
death pathway (Nagata, 1999). 
   We have summarized these molecular mecha-
nisms in a theoretical scheme that represents the 
sequence of events leading to METH-induced neu-
ronal apoptosis and terminal degeneration (Fig. 2). 

METHYLENEDIOXYMETHAMPHETAMINE 
(MDMA, Ecstasy) 

3,4-Methylenedioxymethamphetamine (MDMA, 
Ecstasy) is an abused ring-substituted phenyl-iso-
propylamine that is related to both amphetamines 
and hallucinogens (McKenna and Peroutka, 1990). 
MDMA effects which include increased locomotor 
activity (Matthews et al., 1989) are thought to be 
mediated, in part, by the release of 5-HT (Liechti et 
al., 2000) and subsequent stimulation of its recep-
tors (Bankson and Cunningham, 2001). In addition 
to MDMA behavioral effects, the drug is known to 
cause marked decreases in markers of 5-HT termi-
nals (White et al., 1996). Specifically, levels of 5-
HT and its metabolite, 5-hydroxyindoleacetic acid 

(5-HIAA) (Colado and Green, 1994), tryptophan 
hydroxylase (TPH) activity (Stone et al., 1987) 
and the number of 5-HT uptake sites (see Lyles 
and Cadet, 2003) are all decreased after MDMA 
administration. MDMA can also cause cell death in 
some in vitro models (Simantov and Tauber, 1997; 
Stumm et al., 1999). 

MDMA Neurotoxicity in Animals and Humans
Neurochemical and anatomical studies have shown 
that MDMA can cause long-term abnormalities 
in 5-HT systems of rodents (Schmidt et al., 1986; 
Stone et al., 1986; Commins et al., 1987; Schmidt, 
1987; O'Hearn et al., 1988; Molliver et al., 1990). 
These include decreased levels of 5-HT and its 
major metabolite, 5-HIAA (Commins et al., 1987; 
Schmidt et al., 1987; Schmidt, 1989; Molliver et 
al., 1990), decreased number of 5-HTT (Battaglia 
et al., 1987; Commins et al., 1987; De Souza et 
al., 1990), and decreased activity of the rate-limit-
ing enzyme of 5-HT synthesis, TPH (De Souza et 
al., 1990; Molliver et al., 1990). These changes 
occur in the rodent neocortex, striatum, and hip-
pocampus (Battaglia et al., 1987; Slikker et al., 
1988; De Souza et al., 1990; Molliver et al., 1990). 
These abnormalities are reported to last for months 
or even years after drug administration (Battaglia 

FIGURE 2   METH-regulated molecular events that lead to neuronal apoptosis and terminal degeneration in the 
striatum. This figure summarizes findings of the various papers that have addressed the issue of METH-induced neu-
rotoxicity in the mammalian brain. The data indicate that oxidative mechanisms and cell death pathways are involved 
in the manifestation of METH toxicity.
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et al., 1988; Scanzello et al., 1993; Fischer et 
al., 1995; Lew et al., 1996; Sabol et al., 1996; 
Hatzidimitriou et al., 1999).   
   Similar adverse effects have been reported in non-
human primates (Ricaurte et al., 1988a,b; Slikker et 
al., 1988; Insel et al., 1989; Scheffel et al., 1998; 
McCann et al., 2000). There are dose-dependent 
reductions in 5-HT concentrations in the cortex, 
caudate nucleus, putamen, hippocampus, hypo-
thalamus and the thalamus (Ricaurte et al., 1988b). 
Reduced 5-HT levels were evident for up to seven 
years following exposure to the drug (Scheffel et 
al., 1998; Hatzidimitriou et al., 1999). The MDMA-
induced deficits in nonhuman primates are also 
reflected in the levels of 5-HIAA in the cerebro-
spinal fluid (CSF) (Ricaurte et al., 1988a; Insel et 
al., 1989). Living baboons treated with MDMA (5 
mg/kg s.c., 2 X daily, 4 days) also show marked and 
prolonged decreases in 5-HTT density measured by 
PET imaging of (+)[11C]McN-5652, a radioligand 
that selectively binds to the 5-HTT (Scheffel et al., 
1998). Brain tissues from these animals (sacrificed 
3 weeks after the last PET and 13 months after 
MDMA administration) showed marked loss of 5-
HT terminals (Scheffel et al., 1998).    
   A number of investigators have also tested the pos-
sibility that MDMA can cause degenerative effects 
in the human brain (Ricaurte et al., 1988a; 1990; 
Price et al., 1989; McCann et al., 1994; 1998a; 
1999; Bolla et al., 1998; Semple et al., 1999; Gerra 
et al., 2000; Kish et al., 2000; Buchert et al., 2001). 
Some of these studies have concluded that MDMA 
is also toxic to humans because CSF 5-HIAA lev-
els are reduced in MDMA abusers (Ricaurte et al., 
1988a; 1990; McCann et al., 1994; 1999; Bolla et 
al., 1998). PET imaging studies, using [11C]McN-
5652 to selectively label 5-HTT, have reported 
significant differences in 5-HTT binding in MDMA 
abusers compared to non-MDMA users (McCann 
et al., 1998a). 5-HTT sites were decreased in a 
manner that correlated with the extent of abuse 
(McCann et al., 1998a; Ricaurte et al., 2000). In 
a similar study, using [123I]β-CIT, Reneman et al. 
(2001) investigated the effects of ecstasy abuse 
on the density of cortical 5-HTT. They also found 
decreases in cortical 5-HTT in recent MDMA abus-
ers. However, there were no significant reductions 
in ecstasy abusers who had not used the drug in the 
past year or longer (Reneman et al., 2001).     

   The biochemical and molecular bases of MDMA-
induced neurotoxicity are being actively investigat-
ed. These pathways are thought to involve the for-
mation of toxic MDMA metabolites, temperature 
dysregulation, dopamine-based quinone formation, 
and excitotoxic events.

Formation of Toxic Metabolites
MDMA metabolites, which generate free radicals, 
associated oxidative stress, and membrane dam-
age, are thought to be involved in drug-induced 
neurodegeneration (Paris and Cunningham, 1992; 
Colado and Green, 1995). This idea is supported by 
observations that subcutaneous administration of 
MDMA metabolites, MeDA and HMA can cause 
decreases in 5-HT concentrations in the frontal 
cortex (Yeh and Hsu, 1991), although this line of 
research has remained controversial. The formation 
of hydroquinones, quinones and the subsequent 
generation of superoxides and hydrogen peroxide 
might be important to the manifestation of MDMA 
toxicity. These ideas are supported by the obser-
vations that the spin trap reagent and free radical 
scavenger, α-phenyl-N-tert-butyl nitrone (PBN), 
prevented MDMA-induced toxicity (Colado and 
Green, 1995). In addition to MDMA metabolites, 
the participation of a toxic metabolite of 5-HT has 
also been invoked because the drug causes marked 
increases in 5-HT release (Gudelsky and Nash, 
1996; O'Shea et al., 2005; Amato et al., 2006).
   DA-induced quinone formation is also one pos-
sible cause of MDMA toxicity. This suggestion is 
supported by the fact that MDMA elicits DA release 
(Shankaran and Gudelsky, 1998; Amato et al., 
2006). In addition, destruction of DA terminals by 
injections of 6-hydroxydopamine protects against 
MDMA toxicity (Schmidt et al., 1990). In contrast, 
pretreatment with L-DOPA, which increases DA 
levels, exacerbates MDMA toxicity (Schmidt et 
al., 1990). Thus, DA, which is released by MDMA 
into synaptic clefts, might be taken up by 5-HT 
terminals where it is converted into quinone by-
products that damage 5-HT terminals (Schmidt 
and Kehne, 1990; Sprague and Nichols, 1995). It is 
important to point out that the DA hypothesis does 
not account for the fact that MDMA can damage 
5-HT terminals in areas of the brain such as the 
hippocampus (Shankaran and Gudelsky, 1998) that 
are almost devoid of DA terminals and for the fact 
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that, in almost all animal species, except for mice 
(Cadet et al., 1995), MDMA toxic effects appear to 
involve 5-HT systems. There is also molecular evi-
dence for the involvement of a number of metabolic 
pathways in MDMA-induced neurotoxic damage to 
the brain. Using techniques of microarray analyses, 
it has been shown that MDMA administration influ-
ences the expression of several genes that code for 
proteins that are involved in metabolism and stress 
responses (Thiriet et al., 2002). These changes in 
expression include increases in mRNA levels for 
Gpx-1 and heme oxygenase (Thiriet et al., 2002). 
Because MDMA is metabolized via pathways that 
can induce the formation of superoxides and perox-
ides via redox-cycling (Cadet et al., 1994b; 1995, 
Buchert et al., 2001), the changes in these enzymes 
might constitute compensatory responses to incipi-
ent oxidative damage. A schematic diagram of 
MDMA-induced events that might cause degenera-
tion of 5-HT terminals is presented in Fig. 3. 

Possible Role of Glutamate and Nitric Oxide 
in MDMA-induced Toxicity
Glutamate is a neurotransmitter that can cause 
cell death both in vitro and in vivo (Dawson and 
Dawson, 1998). It has been suggested that gluta-
mate might also be involved in MDMA toxicity 
(Atlante et al., 2001; Battaglia et al., 2002; Stewart 
et al., 2002). For example, blockade of NMDA 

receptors with the antagonist, MK-801, was able to 
provide some protection against MDMA-induced 
5-HT depletion (Farfel et al., 1992; Colado et al., 
1993; Atlante et al., 2001; Battaglia et al., 2002; 
Stewart et al., 2002), although MK-801 had no 
effect on drug-related decreases in TPH activity 
(Johnson et al., 1989). The role of NO in MDMA 
toxicity also has been investigated in rats. It has 
been reported that NG-nitro-L-arginine methyl ester 
(L-NAME), an inhibitor of NO synthase, protects 
against the neurotoxic effects of MDMA via a 
mechanism that involves temperature regulation in 
vivo (Taraska and Finnegan, 1997).   

Role of Hyperthermia in MDMA Neurotoxicity
The amphetamines, including MDMA, are known 
to cause hyperthermic responses (Nash et al., 
1988; Gordon et al., 1991; Dafters, 1995; Dafters 
and Lynch, 1998). A number of drugs that atten-
uate MDMA toxicity also prevent the marked 
drug-induced hyperthermia. Specifically, 5-HT2 
receptor antagonists that block the hyperthermic 
response also protect from MDMA toxicity (Nash 
et al., 1988). Morever, preventing the hypothermic 
responses produced by ketanserin also abolished its 
protective effects (Malberg et al., 1996). In contrast, 
some agents, such as fluoxetine, that provide pro-
tection against MDMA neurotoxicity do not block 
the MDMA-induced temperature increase (Nash 

FIGURE 3   Mechanisms implicated in MDMA-induced 5-HT terminal degeneration. The schematic diagram shows 
that formation of toxic MDMA metabolites, DA quinones and oxidative stress may underlie MDMA toxicity towards 
5-HT terminals in the brain.
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et al., 1988; Mechan et al., 2002). The evidence 
suggests that hyperthermia might be a member of a 
complex set of events that paprticipate in the toxic 
cascades caused by the drug. 
   It is interesting to note that interactions between 
the hypothalamic-pituitary-thyroid axis and sym-
pathetic nervous system might be involved in 
MDMA-related hyperthermic responses (Sprague 
et al., 2003). For example, removal of either the 
pituitary or thyroid glands was shown to prevent 
hyperthermia produced by drug treatment (Sprague 
et al., 2003). In addition,  the use of  antagonists of 
α1 and β3 adrenergic receptors was able to attenu-
ate MDMA-induced temperature increase when 
used alone and could abolish the thermic response 
when the drugs were co-administered (Sprague et 
al., 2003; 2005). Of further interest is the report 
that the skeletal muscle uncoupling mitochondrial 
protein 3 (UCP-3) is also involved in mediating 
MDMA-mediated hyperthermia because UCP-3-
deficient mice treated with the drug showed blunted 
hyperthermic responses (Mills et al., 2003).  

CONCLUDING REMARKS

The amphetamines have a long history of illicit 
use among the various classes in societies around 
the world. The abuse of these drugs has continued 
unabated inspite of the documentation of the clini-
cal and basic toxicology. In this review, we have 
presented evidence that oxidative and excitotoxic 
mechanisms, hyperthermic responses, and other 
metabolic processes are involved in causing the 
neurodegenerative effects of AMPH, METH and 
MDMA. In addition, both AMPH and METH 
have now been shown to cause cell death in vari-
ous regions of the rodent brain via mechanisms 
that involve mitochondrial pathways. Moreover, 
METH-induced neuronal apoptosis appears to also 
be dependent on the activation of caspase-12 
through the endoplasmic reticulum (ER) death 
pathway. More recently the Fas/FaL receptor-medi-
ated cell death mechanisms were also shown to be 
involved in METH toxicity. Microarray analyses 
have also documented the involvement of molecu-
lar pathways that were not initially thought to 
participate in mediating the effects of these drugs. 
Thus, modern neurobiological techniques are offer-
ing more information on the nefarious effects of 

these drugs. It is hoped that this review will provide 
a substratum for other investigators to build upon. 
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