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The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine
neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety
of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced
by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of
biogenic and nonbiogenic amine–containing neurons in several brain areas and endothelial cells that make up
the blood–brain barrier have been reported. The processes that mediate this damage involve not only oxidative
stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as
mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with
chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the
toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to
methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with
HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic
actions of the amphetamines.
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Introduction

Methamphetamine (METH) and its derivative, 3,4-
methylenedioxymethamphetamine (MDMA), are
widely abused psychostimulant drugs. The acute
effects of these drugs include euphoria, alertness,
decreased appetite, increased locomotor activity,
and hyperthermia. Long-term abuse of METH and
MDMA may result in psychosis, aggressiveness, and
neurotoxicity. METH in particular has a very high
abuse potential owing primarily to its strong eu-
phoric properties. According to the recent National
Institute on Drug Abuse (NIDA) reports1–3 the
abuse of METH and MDMA is an extremely se-
rious and growing problem in the U.S. and world-
wide. METH and MDMA use among significantly
diverse populations has been documented. For in-
stance, young adults who attend “raves” or private

clubs are increasingly using amphetamines. METH
use is also high among persons infected with hu-
man immunodeficiency virus (HIV).4 Although the
acute effects of these drugs are relatively well known,
the long-term consequences and possible neurotox-
icities associated with the administration of these
drugs are unclear.

Amphetamines are substrates for transporters as-
sociated with the uptake of the biogenic amines
dopamine (DA), norepinephrine (NE), and sero-
tonin (5-HT). They either diffuse into or are
taken up by nerve terminals via these transporters
and subsequently cause a reverse transport of
monoamines from the cytoplasm into the synap-
tic cleft. Amphetamines also promote DA and
5-HT release from storage vesicles and prevent the
uptake into vesicles, thus increasing the cytoplas-
mic concentrations of the neurotransmitter and
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making them more readily available for reverse
transport. In addition, the amphetamines also in-
crease synaptic levels of monoamines by inhibit-
ing their reuptake.5–8 The net result of the acute
action of the amphetamines is an increased neu-
rotransmission of DA, 5-HT, and NE. METH and
MDMA differ in their affinities for monoamine
transporters. MDMA has a greater affinity for the
5-HT transporter (SERT) versus the DA trans-
porter (DAT) than amphetamine or METH.9 Con-
sequently, MDMA causes a greater release of 5-HT
than DA. In addition, the substituted amphetamines
also increase the release of glutamate (GLU),10–12

which probably contributes to the neurotoxicity
profiles of these drugs.

In rodents and nonhuman primates, adminis-
tration of either a large single dose or repeated
high doses of METH or MDMA produces long-
lasting deficits in markers of DA and 5-HT nerve
terminals (i.e., the levels of a neurotransmitter, its
metabolites, biosynthetic enzymes, receptors, and
transporters)13–20 while sparing NE terminals.17,21

Amphetamines also produce astrogliosis,22–24 and
METH18 but not MDMA21 displays morphologi-
cal signs of axonal degeneration. Early studies have
shown that METH most severely affects DA ter-
minals in the striatum,13,16,18,25,26 whereas DA ter-
minals in the nucleus accumbens, olfactory bulb,
frontal cortex, and hypothalamus are minimally af-
fected or unaffected.15,16 The reasons for this dif-
ference are unclear but could be related to the var-
ied densities of DAT in these regions. In contrast
to DA terminals, 5-HT terminals in various brain
regions including hippocampus, prefrontal cortex,
amygdala, and striatum are equally sensitive to the
toxic effects of METH.15,16,20,27 MDMA differs from
METH in that it is selectively neurotoxic to 5-HT
terminals in multiple brain areas in rodents and
nonhuman primates19,28–32; however, it can produce
DA deficits in mice.24

A persistent reduction in most DA markers33–37

and SERT38,39 also has been observed in human
chronic METH users. Similarly, decreases in SERT
have been observed in multiple brain regions in
chronic MDMA users.40 Because of many animal
studies and more recent studies on humans suggest-
ing that the amphetamines have long-term conse-
quences, efforts have been directed toward the un-
derstanding of the mechanisms that contribute to
the neurotoxicity of the amphetamines. This review

will examine the new characteristics and emerging
mechanisms purported to contribute to the neu-
rotoxic profiles of the substituted amphetamines,
METH and MDMA.

Classical aspects of METH and MDMA
toxicity

Studies on the toxicity of METH and MDMA
to monoaminergic terminals indicate that am-
phetamine toxicity involves the occurrence of at
least three acute events: an increase in extracellu-
lar and intracellular DA, an increase in extracel-
lular GLU, and hyperthermia. The major classical
molecular mechanisms by which these events subse-
quently produce long-term effects include oxidative
stress, excitotoxicity, and mitochondrial dysfunc-
tion. These mechanisms interact and result in the
augmentation of their consequences. Those studies
have been reviewed previously41–48 and therefore
will not be discussed in detail. This review, how-
ever, will focus on new and emerging aspects that
in combination with the more classic mechanisms
summarized in the following, broaden the scope of
the pharmacological action of the amphetamines
and contribute to their long-term toxicity.

Oxidative stress

Several studies using animal models have supported
the involvement of oxidative stress in METH and
MDMA neurotoxicity (reviewed in Refs. 44 and
48). For instance, METH and MDMA produce re-
active oxygen species (ROS) and reactive nitro-
gen species (RNS) and lipid peroxidation prod-
ucts. Neurotoxic effects of amphetamines can be
attenuated by free radical scavengers and antiox-
idants or overexpression of antioxidant enzymes.
Both METH and MDMA decrease the levels of
antioxidants in DAergic and/or 5-HTergic termi-
nals. The presence of oxidative stress has also been
documented in human METH users.49,50 Research
on mechanisms leading to amphetamine-mediated
oxidative stress indicate that an early event in
METH toxicity is an increase in intracellular DA
levels resulting from amphetamine-mediated dis-
ruption of vesicular proton gradient and vesicular
monoamine transporter function.46 This is followed
by an overproduction of toxic metabolites of DA ox-
idation, including free radicals and quinones.51,52

For MDMA, which is neurotoxic only to 5-HT
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terminals, it is believed that DA-derived ROS are
generated in 5-HT terminals either after SERT-
mediated uptake of released DA53 or by the synthesis
of DA from tyrosine.54 Alternatively, toxic metabo-
lites of 5-HT oxidation or MDMA itself can also
mediate MDMA toxicity.55–57

Excitotoxicity

Excitotoxicity includes a succession of several
events: excessive GLU release, activation of GLU re-
ceptors, increase in intracellular calcium levels, ac-
tivation of a variety of calcium-dependent enzymes,
generation of free radicals and nitric oxide (NO),
and activation of apoptotic pathways, culminating
in failure of cellular organelles, such as mitochon-
dria and endoplasmic reticulum (ER), breakdown
of cytoskeletal proteins, and DNA damage.58–60 Sev-
eral studies support a role for excitotoxicity in me-
diating METH neurotoxicity to striatal terminals.
For example, high-dose METH causes a release of
GLU in rat striatum10,61 via activation of the striato-
nigral pathway.62 Inhibition of this release protects
against METH toxicity to terminals.62 Agonists of
metabotropic GLU receptor 5 (mGluR5)63 and in-
hibitors of NO synthase (NOS)64 attenuate METH
toxicity to striatal DA terminals independently from
hyperthermia. Increases in striatal levels of nitrate65

and 3-nitrotyrosine66 suggest that high-dose METH
increases the levels of NO. METH increases break-
down of microtubule-associated protein, tau,67 and
another cytoskeletal protein, spectrin,68 in rat stria-
tum in vivo and cortical neurons in vitro.69 A role for
excitotoxicity in mediating MDMA toxicity is less
clear.48 Nevertheless, the mechanism by which exci-
totoxicity mediates the toxicity of the amphetamines
appears to be NO-mediated nitration of proteins as-
sociated with DA and 5-HT terminals.48

Mitochondrial function

Administration of both METH and MDMA im-
pairs mitochondrial function. More specifically,
toxic doses of METH inhibit mitochondrial elec-
tron transport chain enzyme complexes, complex
I,70 complex II–III,71 and complex IV,72 in the
striatum and other DA-containing brain areas.
High-dose MDMA has been shown to decrease
mitochondrial complex I–II in rat striatum44 and
complex IV in rat striatum, nucleus accumbens,
and substantia nigra.72 In addition, MDMA causes

oxidative stress in mitochondria and deletions in
mitochondrial DNA coding for complex I and
IV in several brain areas.73 A correlation between
impairment of mitochondria and amphetamine
toxicity to monoaminergic terminals has been pro-
vided by several studies. For example, coadminis-
tration of METH74 or MDMA75 with an inhibitor
of energy metabolism synergistically depleted stri-
atal DA or 5-HT, respectively. Conversely, coadmin-
istration of amphetamines with energy substrates
attenuated the neurotoxicity to DA and 5-HT nerve
endings.75,76 The underlying mechanism of the im-
pairment of mitochondrial function appears to in-
volve increases in ROS and RNS64 and/or increases
intracellular calcium,43,44,48 which may be mediated
by GLU.

Hyperthermia

Hyperthermia occurs after the administration of
high doses of both METH and MDMA,77–79 and
its occurrence is important for development of am-
phetamine neurotoxicity to DA and 5-HT termi-
nals. For example, multiple injections of high-dose
METH at room temperature produced a significant
depletion of DA in the striatum; however, equivalent
doses of METH administered in a cold environment
blocked striatal DA and 5-HT depletions in mice.78

Similarly, MDMA toxicity to 5-HT terminals during
hyperthermic and hypothermic conditions also can
be enhanced and attenuated, respectively.79 Hyper-
thermia by itself does not decrease striatal DA levels
in rodents.80 Instead, it is envisioned to enhance
the enzymatic and/or nonenzymatic reactions ini-
tiated by high-dose METH or MDMA treatment.
Hyperthermia might interact with other known me-
diators of METH neurotoxicity, such as increased
GLU neurotransmission and oxidative stress. In fact,
GLU receptor antagonists, such as MK-801, have
been shown to reduce body temperature and pro-
vide neuroprotection.81–83 Similarly, inhibition of
METH-induced hyperthermia decreases the forma-
tion of ROS in the striatum that, in turn, attenuates
the damage to DA terminals.84

New and emerging aspects of the toxicity
of amphetamines

As noted in the preceding, a classic mechanism
underlying the toxicity of the amphetamines in-
volves oxidative stress to DA and 5-HT terminals.
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However, a more current and emerging focus has
been on the toxic effects of the amphetamines to
nonmonoaminergic cell bodies, as originally sug-
gested and demonstrated by several groups in the
1980s and 1990s.19,21,85–90

Emerging mechanisms that may be related to
both terminal and cell body damage produced
by the amphetamines are processes linked to ex-
citotoxicity, inflammation, proteolytic/proteasomal
dysfunction, apoptosis, alterations in trophic sup-
port, HIV infection, and the influence of environ-
mental stress. The review that follows will cover
this current literature while incorporating these
mechanisms into our understanding of the clas-
sic processes involved in damage to DA and 5-HT
terminals.

Most studies of the mechanisms of METH and
MDMA neurotoxicity have, until recently, inves-
tigated the toxic effects on DA and 5-HT ter-
minals. Despite significant damage to these ter-
minals, METH and MDMA appear to spare the
monoamine-containing cell bodies from which
these terminals arise.18,91 Some studies, however,
have reported that amphetamines could produce
neurodegeneration of nonmonoaminergic cell bod-
ies in several brain areas. For instance, high binge
doses of METH87 and MDMA19 produce a loss of
DA cells in the substantia nigra of mice and a loss
of 5-HT cells in dorsal raphe nucleus in nonhuman
primates, respectively. In addition, METH, MDMA
and d-amphetamine damage a population of non-
monoaminergic neurons and their processes in rat
parietal cortex (somatosensory cortex).21,85,88,90,92

In mice, high-dose METH leads to cell death in
a variety of brain areas including the striatum,
cortex (frontal, parietal, and piriform), indusium
griseum, medial habenular nucleus, hippocampus,
tenia tecta, and fasciola cinerea.93,94 More recently,
a low dose of METH has been shown to damage cell
bodies in rat prefrontal cortex of behaviorally sen-
sitized rats,95 whereas an escalating binge dose of
METH damages pyramidal neurons in the frontal
cortex, CA3 and dentate gyrus regions of the hip-
pocampus, and calbindin interneurons of the stria-
tum.96 Finally, there are several more recent reports
of amphetamine toxicity to DA-containing neurons
and their terminals in mouse olfactory bulb97,98 and
rat retina.99

The mechanisms underlying the damage to cell
bodies have yet to be elucidated. Nevertheless, in-

flammatory cytokines, the ubiquitin proteasome
system (UPS), environmental stress, HIV, neu-
rotrophic factors, and apoptotic proteins have re-
cently emerged as mediators of the toxicity of am-
phetamines that may explain both the terminal and
somatic degeneration observed after exposure to
these drugs.

Excitotoxicity to nonmonoaminergic cell
bodies

Studies of mechanisms underlying METH toxicity
to neuronal cell bodies are relatively recent and in-
dicate that an early event in METH toxicity to non-
monoaminergic striatal and somatosensory cortical
neurons might be a release of GLU that initiates a
chain of events culminating in apoptosis.

Striatal GABA neurons and interneurons
Approximately 90% of the neurons in the striatum
are GABAergic medium spiny projection neurons,
which contain either substance P and dynorphin
or enkephalin. The remaining 10% are interneu-
rons, of which the GABA-parvalbumin, somato-
statin (SST)/NOS, and cholinergic interneurons are
the most prevalent.100 It is the GABA neurons that
express enkephalin and parvalbumin in the rat and
mouse striatum that are damaged by METH.101–103

Excitotoxicity mediated by GLU was suggested by
several studies as a mechanism for cell death pro-
duced by METH. Along these lines, striatal neurons
express GLU receptors,104,105 and METH causes a
release of GLU in rat striatum10,61 via activation of
the striatonigral pathway.62 Indirect evidence sug-
gests that METH produces an increase in NO in
the striatum65,66 and induces toxicity to GABAer-
gic neurons via mitochondrial dysfunction and ER
stress,106 both of which are mediated by GLUergic
and calcium-dependent mechanisms. Specifically,
ER stress involves the rapid activation of calcium-
dependent calpain and its substrate caspase-12, as
well as an increase in the expression of other proteins
indicative of ER dysfunction, namely, GRP78, BiP,
and CHOP.106 In parallel, METH causes a release
of cytochrome c, smac/DIABLO, and apoptosis-
inducing factor (AIF)107 from mitochondria to the
cytosol, presumably the result of damage to mito-
chondria. In fact, mitochondrial dysfunction has
been shown to mediate METH-induced apoptosis
in an immortalized rat striatal cell line.108 METH
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also activates the calcium-dependent protease, cal-
pain, to cause spectrin proteolysis.68 These events
are in conjunction with the activation of several ef-
fector caspases and prodeath transcription factors,
including the NFAT-family transcription factors103

that lead to apoptosis. Along similar lines, GLU exci-
totoxicity produces caspase-dependent and caspase-
independent (AIF mediated) apoptosis in neuronal
cells in vitro.109,110 Thus, the convergence of GLU
and calcium-dependent and -independent mecha-
nisms that also involve the mitochondria can medi-
ate the observed death to striatal cells after METH
exposure.

METH-induced apoptosis of striatal GABA neu-
rons also depends on DA. Administration of
DA receptor antagonists prevents DA terminal
damage and apoptosis in mouse striatum,111

whereas administration of a D1 receptor anta-
gonist decreases the number of terminal deoxy-
nucleotidyltransferase-mediated dUTP-biotin nick
end labeling–positive cells and inhibits upregulation
of NFAT transcription factors in rat striatum.103

DA may contribute indirectly to excitotoxicity in
GABA neurons via regulation of (i) extracellular
GLU,61,112 (ii) N-methyl-d-aspartate (NMDA) re-
ceptors,113,114 and/or (iii) substance P signaling115

as well as via ROS formation in the extracellular
space.116,117 The activation of NMDA receptors by
GLU to induce NO in SST/NOS interneurons could
further increase the release of GLU and DA in the
striatum,118 resulting in a feed-forward mechanism
that promotes METH toxicity.

Substance P also may contribute to METH-
induced apoptosis of striatal GABA neurons. Phar-
macological blockade of the substance P receptor,
neurokinin 1 (NK-1R), attenuates METH-induced
damage to DA terminals119 and neuronal apop-
tosis in the striatum.94 Deletion of the NK-1R–
expressing interneurons (SST/NOS and cholinergic)
from the striatum prevents METH-induced apop-
tosis but does not prevent DA terminal damage.120

Most NK-1R–expressing terminals form asymmet-
ric synapses with dendrites and dendritic spines,121

suggesting that substance P modulates excitatory
GLUergic neurotransmission. Therefore, substance
P may mediate neuronal apoptosis via regulation of
GLU release from its afferents and/or via activation
of NOS. Collectively, the available data suggest that
damage to striatal GABA neurons is mediated by
excitotoxicity.

Somatosensory cortex
Administration of amphetamines can cause degen-
eration of a population of nonmonoaminergic cor-
tical neurons and their processes in layers II/III and
IV of rat primary somatosensory cortex.21,22,85,88,90

The damaged neurons have been identified as pyra-
midal or stellate cells88,90,92 confined to the cy-
tochrome oxidase–rich areas.92 The morphology,
localization, absence of monoaminergic markers,85

and substantial decrease in GLU immunoreactiv-
ity in affected areas22 suggest that these neurons are
GLUergic. The cortical damage produced by METH
occurs via an excitotoxic mechanism, as evidenced
by the findings that METH induces a rapid increase
in NMDA receptor binding122 and that NMDA re-
ceptor antagonism89 or removal of excitatory sen-
sory input from rat whiskers to somatosensory cor-
tex123 decreases the rapid Fluoro-Jade staining in
this cortical area.

Overall, the toxicity induced by amphetamines
appears to be more widespread than originally be-
lieved and includes damage to cell bodies as well as
terminals. An increase in extracellular GLU may me-
diate the damage to both targets, but the terminals
may be more susceptible because of the occurrence
of DA-mediated intracellular oxidative stress and
other factors, such as proinflammatory mediators
that converge upon the terminals.

Inflammation

METH-induced GLU release may also serve to ac-
tivate inflammatory mediators of METH toxicity
to monoaminergic as well as nonmonoaminergic
neurons. For instance, GLU receptor antagonism
decreases,124,125 whereas GLU receptor stimulation
increases, microglial activation. Thus, activation of
GLU receptors increases the production of proin-
flammatory cytokines interleukin 1� (IL-1�), tu-
mor necrosis factor � (TNF-�), and IL-6.126–129 In
turn, cytokines can increase extracellular GLU levels
by either inhibition of GLU uptake130 or an increase
in GLU release from activated microglia.131 Thus,
the interactions between the cytokines and GLU may
form a feed-forward cycle to promote neurotoxicity.

METH and MDMA trigger inflammation in brain
areas that exhibit DA and 5-HT terminal degen-
eration. METH elicits microglial activation in rat
and mouse striatum132–136 rat cortex (including
somatosensory and frontal cortices)96,136–138 and
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hippocampus137,139 but not in areas where DA lev-
els are unaffected by METH, such as substantia
nigra.132,134 METH-induced microglial activation
occurs in the rat somatosensory cortex138 but not
mouse somatosensory cortex.140 Microglial activa-
tion has also been detected in the brains of human
METH users141 and nonhuman primates adminis-
tered METH.142

Microglia might be involved in the toxic effects
of METH to DA terminals and GABA neurons via a
release of proinflammatory and prooxidative stress
molecules into the extracellular space. In mouse
striatum, a single dose of METH increased mRNA
levels of IL-6, TNF-�, and IL-1�.143,144 Interestingly,
METH-induced microglial activation appears to de-
pend on newly synthesized and released DA. Thus,
a decrease in DA synthesis or an increase in cy-
tosolic DA can decrease and increase, respectively,
microglial activation in mouse striatum.140 These
results are in conflict with the finding that DA it-
self inhibits the activation of microglia in vitro.145

In contrast, DA quinones are powerful activators
of microglia.146 Therefore, it can be envisioned that
nonenzymatic degradation of DA that is released af-
ter METH results in production of DA quinones147

and, in turn, activates striatal microglia to provide
a proinflammatory stimulus for neurodegeneration
of both DA terminals and striatal cell bodies.

The ability of MDMA to induce microglial ac-
tivation is more equivocal. For example, MDMA-
induced microgliosis was detected in male133 but
not female136 mouse striatum and was absent in rat
striatum or cortex.137 In contrast, MDMA increased
production of IL-1� in rat frontal cortex,148,149

whereas intracerebroventricular administration of
IL-1� potentiated MDMA-induced 5-HT toxicity
in the cortex.146 An explanation for the varied re-
sults and the limited potential of MDMA to induce
microglial activation might stem from the fact that
MDMA also has an immunosuppressive action that
involves suppression of proinflammatory cytokines
via an increase in IL-10 production.150 However,
central injections of proinflammatory factors inter-
feron � 151 and lipopolysaccharide152 before or im-
mediately after METH administration can attenuate
METH toxicity to striatal DA terminals through a
decrease in extracellular GLU concentrations,153,154

or a decrease in extracellular and intracellular DA
levels.155 These data suggest that the initial and acute
upregulation of inflammatory cytokines might be

protective by upregulating the buffering capacity of
either neurons or glia to counter the excessive and
prolonged increases in GLU or DA. In contrast, the
neurotoxic effects of the cytokines may be related to
the magnitude of their increase after the induction
of the GLU excitotoxicity cascade.

Astrocytes can also play a role in substituted am-
phetamine toxicity through modulation of GLU-
mediated excitotoxicity and inflammation. Astro-
cytes regulate extracellular concentrations of GLU,
mainly by uptake of the neurotransmitter. They can
also release GLU upon activation through an in-
crease in intracellular calcium.156 For METH, the
activation of cortical astrocytes appears to be caused
by GLU release and protein kinase C activation and
is inhibited by GLU receptor antagonists.157 Under
normal physiologic conditions, however, astrocytes
suppress microglial activation through the release of
anti-inflammatory cytokines and neurotrophic fac-
tors.124 For example, astrocytes suppress microglial
activation by releasing the anti-inflammatory cy-
tokines transforming growth factor � (TGF-�) or
IL-10.158,159 On the other hand, IL-1 and TNF-� are
known to be involved in the development of cen-
tral nervous system inflammation through, among
other factors, the induction of chemokines from as-
trocytes.160 Therefore, astrocytes can mediate either
an increase or decrease in inflammation depending
on the cytokine that is released. More information
is needed to identify the specific conditions under
which astrocytes may be pro- or anti-inflammatory.

Oxidative stress plays a key role in substituted
amphetamine toxicity, as noted in the preceding.
Moreover, oxidative stress and inflammation are in-
timately linked,48,161 but the exact relationship be-
tween the two in mediating amphetamine toxicity
is unclear. However, edaravone, a free radical scav-
enger, blocked METH toxicity to DAergic termi-
nals, the increase in protein oxidation as evidenced
by 3-nitrotyrosine immunoreactivity, and the acti-
vation of astrocytes, but it did not affect the activa-
tion of microglia,162 suggesting that METH-induced
activation of microglia and inflammation is inde-
pendent of oxidative stress. In fact, a variety of in-
tracellular signaling molecules that have been iden-
tified to be involved in METH toxicity, such as GLU,
DA-quinones, matrix metalloproteinases (MMPs),
substance P, and �-synuclein, can induce mi-
croglial activation124,146,161 independent of the for-
mation of free radicals. However, oxidative stress can
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activate microglia to release MMP-3 and �-
synuclein,161 thus providing another means by
which microglia are activated. The self-perpetuating
cycle of oxidative stress and inflammation is fur-
ther promoted by the diminished capacity of mi-
croglia under prooxidant conditions to store iron,163

thereby potentially exacerbating Fenton reaction
and iron-dependent oxidative stress that medi-
ates METH toxicity.164 Taken together, activated
microglia can initiate, exacerbate, and perpetuate
METH neurotoxicity.

The time courses of microglial activation and in-
creases in inflammatory markers vary relative to
indices of neurotoxicity. For example, microglial
activation in the striatum occurs 1–3 days after
METH132–136 and precedes degeneration of DAer-
gic terminals.135,138 On the other hand, rat striatal
GABA-enkephalin neurons exhibit an upregulation
of FasL, a member of the TNF superfamily of cy-
tokines, that appears as soon as 2–4 h after one high
dose of METH.103 Interestingly, Bowyer et al.135 re-
ported the relatively early appearance of phagocytic
microglia with Fluoro-Jade C–labeled striatal neu-
rons in mice 12–24 h after one high dose of METH.
These findings suggest that damage to striatal cell
bodies appears before the neurodegeneration of DA
terminals, but it is unknown whether damage to
GABA neurons plays a causal role in DA terminal
degeneration or is simply an independent event. Re-
gardless of the temporal relationship between the
activation of microglia and the appearance of neu-
rodegeneration, microglia are emerging as new play-
ers in the toxicity of the amphetamines that, at the
minimum, perpetuate excitotoxic events that even-
tually lead to neurodegeneration. Although factors
that promote and perpetuate toxicity have histor-
ically been the focus of studies on the neurotoxic
amphetamines, more recent efforts have been di-
rected toward endogenous protective systems, such
as the UPS, and neurotrophic factors that are emerg-
ing as targets whose functions may be compromised
by these drugs.

Ubiquitin proteasomal system

Recent studies have shown that the substituted am-
phetamines promote the dysregulation of the UPS,
which may further contribute to neurotoxic and
apoptotic events. A decrease in the activity of the
UPS can lead to the accumulation of unwanted

proteins and has been implicated in the etiology
of various neurodegenerative disorders.165 Further-
more, identified mediators of amphetamine neuro-
toxicity described in the foregoing, such as GLU-
induced NOS activity, mitochondrial dysfunction,
and oxidative stress, are known to affect or be af-
fected by the UPS. Inhibition of the proteasome can
block inducible NOS degradation166 and potentially
increase NO production, NO-mediated nitrosative
stress, damage to the ubiquitin ligase, parkin,167 and
protein misfolding,168 all of which can potentiate the
inhibition of the proteasome.60,169,170 Conversely,
proteasomal inhibition can produce an impairment
of the mitochondria and a release of proapoptotic
proteins.171 Therefore, on the basis of the overlap
between mediators of amphetamine toxicity and
events associated with the UPS, these studies suggest
the view that amphetamines can lead to unwanted
accumulation of protein through a dysregulation of
the UPS.

Administration of high METH or MDMA doses
causes formation of intracellular inclusions in the
nucleus of medium-sized GABA neurons and cyto-
plasm of neurons of the substantia nigra pars com-
pacta of mice.117,172–176 The inclusions in GABA
neurons stain for ubiquitin and enzymatic com-
ponents of the UPS (including E3 ligase parkin)
but usually not for �-synuclein, whereas inclu-
sions found in substantia nigra neurons stain for
�-synuclein, a hallmark of Lewy bodies frequently
observed in Parkinson’s disease and other degen-
erative disorders. Occurrence of ubiquitinated in-
clusions was also reported in the substantia ni-
gra of 37 subjects who abused METH.177 The
specific cause of the inclusions is unknown, but
neuronal inclusions can occur when the UPS is in-
hibited pharmacologically.178,179 Moreover, oxida-
tive stress commonly leads to inclusion formation,
and the inclusions produced by METH, MDMA,
and MPTP180 are ultrastructurally similar to those
produced by DA-mediated oxidative stress.117,172,173

In addition, inclusion formation is decreased upon
administration of antioxidant/iron-chelating agent,
S-apomorphine.175

It is hypothesized that striatal neuronal inclu-
sions are a consequence of amphetamine-mediated
increases in DA release followed by overstimulation
of DA D1 receptors.117,181 The underlying mecha-
nism is thought to involve �-arrestin that is present
together with ubiquitin in inclusions after exposure

Ann. N.Y. Acad. Sci. xxxx (2010) 1–21 c© 2010 New York Academy of Sciences. 7



Substituted amphetamines and neurotoxicity Yamamoto et al.

of PC12 cells to METH.182 Because �-arrestin is
involved in the internalization of DA and mGlu5
receptors,183–185 it suggests the possibility that ac-
tivation of these receptors contributes to the for-
mation of inclusions in striatal GABA neurons. In
addition, DA and non–DA-derived ROS might dif-
fuse to GABA neurons and inhibit the function of
proteasome.117

�-Synuclein, a presynaptic protein involved in
various degenerative disorders including Parkin-
son’s disease, might also contribute to DA-
dependent inclusion formation in nigral cells af-
ter toxic amphetamine administration. Increases in
�-synuclein levels are known to be toxic to DA
neurons in vitro186 and in vivo.187 Administration
of METH and MDMA increases expression of �-
synuclein in DA neurons in the substantia nigra of
mice.176 It is possible that covalent modification of
�-synuclein by DA-derived quinone188,189 after am-
phetamine administration promotes the formation
of toxic �-synuclein aggregates.190

Misfolded protein aggregates or damaged or-
ganelles that accumulate cannot be degraded by
the UPS. This function is reserved for the lysoso-
mal system and the process of microautophagy. Au-
tophagic vacuole formation by the lysosomal system
will remove oxidized and damaged organelles (such
as mitochondria) and misfolded protein aggregates
produced by METH. Conversely, inhibition of au-
tophagy is deleterious to cells because of a dimin-
ished ability to clear �-synuclein aggregates after
METH exposure, eventually resulting in caspase-
dependent cell death.191

Now it is unclear whether a dysfunction of the
UPS system is a consequence or a cause of the
toxicity to the amphetamines. It remains to be
determined if the excitotoxic, oxidative, and in-
flammatory mediators discussed earlier directly tar-
get the UPS and thus disrupt the normal, ongo-
ing removal of unwanted proteins to ultimately
produce the demise of cell bodies and terminals.
A likely scenario, however, is that the damage
produced by the amphetamines is ultimately de-
pendent upon the balance of factors that pro-
mote toxicity (e.g., excitotoxic glutamatergic events,
prooxidant processes, inflammation) and endoge-
nous protective systems (such as the UPS), antiox-
idants, and growth-promoting molecules (such as
neurotrophic factors) that can be targeted by toxic
insults.

Neurotrophic factors

Several neurotrophic factors can act as survival-
promoting proteins. These factors include neu-
rotrophins, glial cell line–derived neurotrophic fac-
tor (GDNF) family, and TGF-�.192 Neurotrophins
comprise a family consisting of four members: nerve
growth factor (NGF), brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), and NT-
4.193 The GDNF family includes GDNF, neurturin,
artemin, and persephin.194 Of these, GDNF was the
first neurotrophic factor demonstrated to protect
DA terminals against METH neurotoxicity in ani-
mal models.195–197 Recently, neurturin and artemin
are two other GDNF family members that have
been shown to protect against METH toxicity in
the rat.198 The protective action of GDNF might
involve regulation of DA release196 and/or attenu-
ation of METH-mediated oxidative stress: GDNF
has been shown to upregulate striatal antioxidant
enzymes in vivo199 and reduces levels of free radicals
in cultured mesencephalic neurons.200 Conversely,
a study by Boger et al.201 demonstrated that a par-
tial GDNF gene deletion increased the susceptibil-
ity of mice to METH neurotoxicity during young
adulthood and increased age-related deterioration
of motor behavior and DA function.

In contrast to the protective effects of several of
the growth factors, ciliary neurotrophic factor pro-
vides no protection against METH toxicity to DA
neurons.198 In non-DAergic primary rat cortical
neurons, METH-triggered apoptosis was attenuated
by BDNF through the PI3K–Akt but not MAPK–
Erk pathway.202 Overall, these results indicate that
GDNF may play a greater role in protecting DA
terminals against METH toxicity, whereas BDNF
may be more potent in the protection of non-DA
neurons.

Blood–brain barrier dysfunction

Recent studies have begun to demonstrate another
emerging consequence of exposure to high doses
of the amphetamines. Administration of MDMA
or METH has been shown to increase blood–brain
barrier (BBB) permeability in rodents. MDMA-
induced damage to the BBB was observed in the
striatum and hippocampus.43 Moderate to high
doses of METH disrupt the BBB in several brain
regions, including the cortex, hippocampus, tha-
lamus, hypothalamus, cerebellum, amygdala, and
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striatum135,203–206 that, in turn, are augmented by
hyperthermia and seizures.135,205,206 Although it is
unclear whether there is a relationship between the
damage to the BBB and the damage to neurotrans-
mitter systems, the damage to the BBB appears to
contribute to striatal neuron degeneration rather
than DA terminal damage.135

The mechanisms underlying the damage to the
BBB produced by the amphetamines have not been
elucidated. However, the amphetamines can cause
hyperthermia77–79 and produce ROS,164 both of
which trigger BBB breakdown.207 Consistent with
these findings, administration of antioxidants at-
tenuates the effects of amphetamines on the BBB205

and further implicates oxidative stress in the effects
of amphetamine at the BBB.

Another possible mediator of the damage to the
BBB could be the MMPs, whose functions are to
degrade tight junction proteins208 present in the
extracellular matrix that supports the endothe-
lial cells of the BBB.209 METH has been shown
to increase the release of MMP-1 and the MMP
activator, urokinase plasminogen activator, in
neuron–astrocyte cocultures.210 METH also alters
the expression of several tight junction proteins
and increases the permeability of brain-derived pri-
mary microvascular endothelial cells.211 High doses
of METH also increase the levels of MMP-9 in
the hippocampus.212 The activation of the MMPs
is thought to occur through several mechanisms,
including oxidative stress213 and cytokine produc-
tion.214,215 Collectively, these findings suggest that
amphetamine-mediated oxidative stress followed by
activation of MMPs and breakdown of tight junc-
tions mediate BBB disruption. Because both activa-
tion of MMPs216 and oxidative stress161 can induce
inflammation, these events in conjunction with the
MMPs could be accompanied by an increase in cy-
tokine production within microglia217 to perpet-
uate damage and increase the permeability of the
BBB. The consequences of the breakdown in the
BBB are widespread and may enhance the vulner-
ability of the brain to toxins and infection, such
as those produced by HIV. This and the fact that
the BBB breakdown can be mediated by other toxic
mechanisms, such as oxidative stress, neuroinflam-
mation, and hyperthermia, suggests it as a new
and important contributing factor to the toxicity of
amphetamines.

Interactions of amphetamines and HIV

The comorbidity of drug abuse and HIV infection
is well known. Early findings of decreases in post-
mortem levels of DA and homovanillic acid in the
caudate nucleus and substantia nigra neuron degen-
eration in HIV patients suggested that HIV infec-
tion might damage nigrostriatal DA neurons.218,219

It was subsequently found that HIV injured not only
these two regions but also other brain areas, such as
prefrontal cortex, parietal cortex, nucleus accum-
bens, and hippocampus, thus increasing the vul-
nerability of these areas to METH toxicity in HIV-
infected METH users.220 Along these lines, intrastri-
atal injections of the HIV protein, Tat, damage both
efferent and afferent projections of the rat stria-
tum and/or substantia nigra neurons,221–224 com-
mon targets of the toxic effects of METH.

Similar mechanisms mediate the toxicity to the
amphetamines and HIV. Oxidative stress, mito-
chondrial dysfunction, inflammation, and caspase-
dependent neuronal apoptosis220,225 all contribute.
Similar to METH, Tat potentiates GLU toxicity via
interaction with the NMDA receptor,226 causes neu-
ronal cell death via activation of the D1 receptor,227

and decreases DAT function.228

The combined effects of HIV and chronic METH
exposure converge to produce neuronal dam-
age and inflammation. N-Acetylaspartate, myo-
inositol, and brain metabolites are increased more in
HIV-positive METH abusers than in HIV patients
with no METH abuse.229 Langford et al.230 found
decreased blood flow; an increased microglial re-
sponse; and more pronounced losses of synaptic
vesicle–associated protein, synaptophysin, and the
interneuron-associated protein, calbindin, in HIV-
infected METH abusers relative to HIV-infected
non-METH abusers. Similarly, Chana et al.231 re-
ported that HIV-positive METH users have greater
losses of frontal cortex calbindin and parvalbumin
interneurons than do HIV non-METH abusers and
that these effects are associated with cognitive im-
pairment. In addition, METH has been shown to
enhance HIV infection of macrophages, the primary
target of the virus, and decrease IFN-� in these cells
in vitro.232

The mediators of the damage produced by the
combination of HIV and METH are being ac-
tively investigated. Tat and METH synergistically
impair mitochondria in a variety of cellular targets,

Ann. N.Y. Acad. Sci. xxxx (2010) 1–21 c© 2010 New York Academy of Sciences. 9



Substituted amphetamines and neurotoxicity Yamamoto et al.

including DAergic neurons233; a non-DAergic,
calbindin-positive hippocampal cell line234; and hu-
man fetal neurons.235 This effect on mitochondria is
accompanied by oxidative stress and can be blocked
by antioxidants.234,235 In HIV-positive rodent stria-
tum, METH produces a synergistic increase in ox-
idative stress markers, expression of several inflam-
matory cytokines (e.g., IL-1�, IL-1�, and TNF-�),
augmented activity of redox-responsive transcrip-
tion factors,236,237 and toxicity to striatal DA ter-
minals.224,235,238 These findings indicate that HIV
infection increases susceptibility of DAergic and
non-DAergic neurons to METH neurotoxicity.
Moreover, oxidative stress, inflammation, and pos-
sibly excitotoxicity might interact to exacerbate tox-
icity in HIV-infected METH users.

Both METH and HIV increase permeability of
the BBB via damage to tight junction proteins.211 In
HIV-positive METH abusers, METH-induced in-
creases in BBB permeability might facilitate an in-
creased transport of HIV-infected leukocytes across
the BBB. In fact, both METH and HIV pro-
tein gp120, alone and in combination, signifi-
cantly increase transendothelial migration of im-
munocompetent cells across the BBB.211 Conversely,
HIV-induced increases in BBB permeability might
facilitate an increased transport of METH. Finally,
METH may contribute to HIV-induced BBB break-
down by stimulating release and/or activation of
MMPs. Levels of MMP-2, -7, and -9 are higher
in cerebrospinal fluid of HIV-infected individu-
als,239,240 and both METH and Tat increase the
release of MMPs in vitro.210 Overall, the common
mechanisms underlying the toxic effects of METH
and HIV appear to accurately predict an additive if
not a synergistic damage to neurons and endothelial
cells of the BBB. Therefore, the dangerous conse-
quences of the comorbidity of amphetamine abuse
with HIV infection can be extended to include po-
tentiated and exacerbated damage to multiple cells
in the central nervous system.

Interactions of amphetamines
and environmental stress

The stress response involves a release of glucocorti-
coid hormones via activation of the hypothalamic–
pituitary–adrenal axis as well as a release proin-
flammatory cytokines via activation of the immune
system.241,242 In experimental animals, chronic

stress potentiates the toxicity of neurotoxins243–247

and can cause neurodegeneration by itself.248

Chronic stress also exerts neurotoxic effects in hu-
mans.249,250 Several neurochemical effects are com-
mon to the amphetamines and stress and include
oxidative stress, excitotoxicity, mitochondrial dys-
function, depletion of energy stores, increase in
glucose utilization, inflammation, and hyperther-
mia.48,241,242 In fact, stress can potentiate METH-
induced excitotoxicity247,251 and hyperthermia.252

Stress may also contribute to the toxic effects of
the amphetamines through the mechanisms sum-
marized in previous sections, such as trophic fac-
tor expression, UPS function, and HIV infections.
For example, exposure to a variety of stressors de-
creases the levels of NGF in rat hippocampus.253 In
an astroglial cell line, corticosterone reduces basal
levels of NGF secretion and stimulated NGF secre-
tion triggered by IL-1� and TGF-�1.254 In addi-
tion, corticosterone-induced cell death can be pre-
vented by administration of BDNF255 or insulin-
like growth factor256 in cultured rat hippocampal
neurons. For UPS activity, the proteasome regu-
lates glucocorticoid receptor activity via regulation
of the trafficking of the receptor. Inhibition of the
proteasome blocks glucocorticoid receptor translo-
cation to the nucleus,257 which would increase ex-
pression and signaling of the receptor at the plasma
membrane. Conway-Cambell et al.258 have demon-
strated that the proteasome also regulates glucocor-
ticoid receptor activity via the rapid degradation of
the activated glucocorticoid receptor. In regard to its
interaction with HIV, HIV-positive patients have in-
creased hypothalamic–pituitary–adrenal axis activ-
ity259 that, in turn, can potentially increase the toxic
effects of stress and the amphetamines as well as
their combined exposures. Overall, there are multi-
ple overlapping mechanisms between stress and the
amphetamines that predict an augmentation of neu-
rotoxicity produced by their combined exposure,
such as that observed in individuals with posttrau-
matic stress disorder that have a high comorbidity
with substance abuse.260

Concluding remarks

There is mounting evidence that the characteris-
tics of amphetamine-induced toxicity extend be-
yond the selective damage to DA and 5-HT termi-
nals to include neuronal and endothelial cell bodies.
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The underlying mechanisms have yet to be eluci-
dated, and the consequences of this extended dam-
age remain to be determined. However, the causes
of the newly identified consequences to cell bodies
most likely involve a convergence of excitotoxic, pro-
teolytic, inflammatory, and bioenergetic processes
that interact with and contribute to the previously
established role of oxidative stress. Although ba-
sic experimental studies have provided clear, inter-
pretable roles for each of these causative processes,
we now know that each process does not occur in
isolation. Moreover, the frequent comorbidities of
the abuse of the amphetamines with other expo-
sures, such as environmental stress, hyperthermia,
and HIV infection, add to the complexity and sever-
ity of the toxicity. More studies are needed that take
into account and model the more realistic scenario
involving their concurrent exposures, comorbidi-
ties, and how they interact before effective thera-
peutic interventions can developed.
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