Drug and Alcohol Dependence 177 (2017) 228-236

Contents lists available at ScienceDirect

Drug and Alcohol Dependence

journal homepage: www.elsevier.com/locate/drugalcdep

Full length article

Cigarette smoking is associated with amplified age-related volume loss in
subcortical brain regions

@ CrossMark

Timothy C. Durazzo™"™", Dieter J. Meyerhoff““, Karmen K. Yoder®, Donna E. Murray“‘

@ Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States

® Mental Iliness Research and Education Clinical Centers and Sierra-Pacific War Related Illness and Injury Study Center, VA Palo Alto Health Care System, United States
€ Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States

4 Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, United States

€ Indiana University Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, United States

ARTICLE INFO ABSTRACT

Background: Magnetic resonance imaging studies of cigarette smoking-related effects on human brain structure
have primarily employed voxel-based morphometry, and the most consistently reported finding was smaller
volumes or lower density in anterior frontal regions and the insula. Much less is known about the effects of
smoking on subcortical regions. We compared smokers and non-smokers on regional subcortical volumes, and
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3\1/1}]:ct ortlca;lt predicted that smokers demonstrate greater age-related volume loss across subcortical regions than non-smo-
1te matter

kers.
FreeSurfer

Methods: Non-smokers (n = 43) and smokers (n = 40), 22-70 years of age, completed a 4 T MRI study. Bilateral
total subcortical lobar white matter (WM) and subcortical nuclei volumes were quantitated via FreeSurfer. In
smokers, associations between smoking severity measures and subcortical volumes were examined.

Results: Smokers demonstrated greater age-related volume loss than non-smokers in the bilateral subcortical
lobar WM, thalamus, and cerebellar cortex, as well as in the corpus callosum and subdivisions. In smokers,
higher pack-years were associated with smaller volumes of the bilateral amygdala, nucleus accumbens, total
corpus callosum and subcortical WM.

Conclusions: Results provide novel evidence that chronic smoking in adults is associated with accelerated age-
related volume loss in subcortical WM and GM nuclei. Greater cigarette quantity/exposure was related to smaller
volumes in regions that also showed greater age-related volume loss in smokers. Findings suggest smoking
adversely affected the structural integrity of subcortical brain regions with increasing age and exposure. The
greater age-related volume loss in smokers may have implications for cortical-subcortical structural and/or
functional connectivity, and response to available smoking cessation interventions.

1. Introduction

The relationship between cigarette smoking and risk for cardiac,
pulmonary and vascular disease as well as for multiple forms of cancer
in humans is essentially incontrovertible (CDC, 2004). Moreover, con-
siderable recent evidence now links smoking, in otherwise healthy in-
dividuals, to significant neurobiological and neurocognitive abnorm-
alities that are not specifically attributable to the above diseases
(Azizian et al., 2009; Durazzo et al.,, 2014a; Durazzo et al., 2010;
Sharma and Brody, 2009). Macrostructural morphological abnormal-
ities are the most consistently reported neurobiological consequence
associated with chronic cigarette smoking (Durazzo et al., 2010; Pan
et al., 2013; Sutherland et al., 2016). Most magnetic resonance (MR)

imaging studies investigating smoking-related changes in brain mor-
phology focused on cortical gray matter (GM) volumes, and smaller
volumes or lower density in anterior frontal regions and the insula were
most consistently reported finding [see (Durazzo et al., 2010; Pan et al.,
2013; Sutherland et al., 2016) for review]. Fewer studies described
smoking-related effects on subcortical nuclei/region volumes. Older
adult smokers (=64 years of age) had decreased thalamic volume re-
lative to non-smokers (Almeida et al., 2008). Young-to-middle aged
otherwise healthy smokers, compared to non-smokers, demonstrated
smaller volumes or lower density in the thalamus (Franklin et al., 2014;
Liao et al., 2012), globus pallidus (Hanlon et al., 2016), and cerebellum
(Brody et al., 2004; Franklin et al., 2014; Gallinat et al., 2006; Kuhn
et al., 2012; Wetherill et al., 2015; Yu et al., 2011). Conversely, some
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studies indicated that young-to-middle-aged adult smokers had larger
volumes than non-smokers in the putamen (Franklin et al., 2014;
Wetherill et al., 2015; Yu et al., 2011). Subcortical neurobiological
abnormalities may underlie compulsive consumption in substance use
disorders, including nicotine dependence (see Franklin et al., 2014 and
references cited therein). In the above studies, voxel-based morpho-
metry compared GM density or volume between smokers and non-
smokers. While this approach allowed testing for the effect of smoking
status (i.e., smoker vs. non-smoker) collapsed across the age range of
the participants, only one study (Franklin et al., 2014) specifically
tested for, but did not observe, a smoking status by age interaction.

The risk for smoking-related diseases increases with years of
smoking (CDC, 2004), which is inextricably related to age. In healthy
adults, increasing age is associated with declines in multiple MR-based
measures, including regional brain volumes (Crivello et al., 2014;
Walhovd et al., 2011), brain metabolite levels (Chang et al., 2009), as
well as neurocognition (Salthouse, 2000). In healthy participants 25-70
years of age, our previous MR imaging studies showed that smokers had
both lower mean values and greater age-related declines in total hip-
pocampal and hippocampal subregion volumes (Durazzo et al., 2013);
we also observed similar age-related declines in anterior frontal brain
metabolite (N-acetylaspartate and glutamate) concentrations (Durazzo
et al., 2016c). In these studies, greater cigarette pack-years were related
to smaller hippocampal volumes and lower metabolite levels. The
greater age-related declines apparent in smokers suggest that chronic
smoking amplified the effects of normal aging on hippocampal mac-
rostructure and anterior frontal brain metabolite levels in our adult
participants. Given that previous subcortical morphological studies did
not specifically test for, or report, a smoking status by age interaction, it
remains unclear if cigarette smoking is associated with more wide-
spread subcortical volume loss with increasing age in adults. Such
structural alterations may be clinically important because they could
influence reward processing and response to smoking cessation inter-
ventions via alterations of structural and/or functional connectivity in
frontolimbic and/or frontostriatal circuitry (Froeliger et al., 2015;
Sutherland et al., 2016; Sweitzer et al., 2016). Based on our previous
neuroimaging findings, we predicted that adult smokers demonstrate
smaller mean volumes and greater age-related volume loss than non-
smokers in the thalamus, cerebellum, brainstem, total subcortical lobar
white matter, and basal ganglia nuclei. We predicted higher pack-years
are related to smaller regional subcortical volumes in smokers.

2. Methods
2.1. Participants

Eighty-three healthy, community-dwelling participants [43 non-
smokers (eight females) and 40 smokers (five females)] were recruited
via electronic billboards and word-of-mouth. Participants were between
the ages of 22 and 70 (see Table 1 for demographics). Participants
provided written informed consent according to the Declaration of
Helsinki, and all procedures were approved by the University of Cali-
fornia San Francisco and the San Francisco VA Medical Center.

Detailed inclusion/exclusion criteria are fully described elsewhere
(Durazzo et al., 2011a). In summary, participants were screened for
history of neurologic (e.g., seizure disorder, neurodegenerative dis-
order, demyelinating disorder, closed head trauma with loss of con-
sciousness), general medical (e.g., hypertension, myocardial infarction,
Type-1 or 2 diabetes, cerebrovascular accident, any form of cancer),
and psychiatric (i.e., mood, thought, anxiety, substance/alcohol use
disorders) conditions known or suspected to influence neurocognition
and/or brain neurobiology. All females were pre-menopausal, by self-
report. All non-smoking participants never smoked, or smoked less than
40 cigarettes during their lifetime and used no cigarette/tobacco pro-
ducts for 10 years prior to study. All smoking participants were actively
smoking at the time of assessment, smoked at least 10 cigarettes per day
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Table 1
Group Demographics, Alcohol
Intracranial Volume (ICV).

and Cigarette Use Histories, Mood Measures, and

Measure; min—-max Non-smokers (n = 43) Smokers(n = 40)

Age (years) 43 (13) 22-70 47 (11) 22-64

Education (years) 16 (2) 12-20 15 (2) 12-20

Male (%) 81 87

Caucasian (%) 60 70

Lifetime average 19 (11) 1-54 26 (14) 3-56*
drinks/month

FTND NA 5 (2) 2-8

Pack-years NA 26 (16) 0.5-63

Age onset of smoking NA 16 (6) 13-24

BDI 3(3)0-13 6 (3) 0-13*

STAI 32 (7) 21-46 34 (9) 20-56

Intracranial volume (cc) 1409 (201) 972-1738 1477 (208) 828-1750

Note. BDI: Beck Depression Inventory. FTND: Fagerstrom Tolerance Test for Nicotine
Dependence. Min: minimum. max: maximum. NA: not applicable. STAIL: State —trait
Anxiety Inventory — Trait. *Smokers > Non-smokers, p < 0.05. Mean (SD).

for 5 years or more, and had no periods of smoking cessation greater
than 1 month in the 5 years prior to study, with no concurrent use of
other tobacco products. No smoker was engaged in any pharmacolo-
gical/behavioral smoking cessation program.

2.2. Medical, psychiatric, substance, alcohol consumption assessment

Participants completed the screening section of the Structured
Clinical Interview for DSM-IV Axis I disorders, Patient Edition, Version
2.0 [SCID-I/P; (First et al., 1998)], as well as an in-house questionnaire
designed to screen for medical, psychiatric, neurological and develop-
mental conditions that may affect neurocognition or neurobiology [see
(Durazzo et al., 2004)]. Participants completed standardized ques-
tionnaires assessing lifetime alcohol consumption [Lifetime Drinking
History, LDH; (Skinner and Sheu, 1982; Sobell et al., 1988)] and sub-
stance use [in-house questionnaire assessing substance type, quantity
and frequency of use (Abe et al., 2013)]. From the LDH, we derived
average number of drinks per month over lifetime (one drink defined as
containing 13.6 g of pure ethanol). Participants also completed self-
report measures of depressive [Beck Depression Inventory, BDI; (Beck,
1978)] and anxiety symptomatology [State-Trait Anxiety Inventory,
form Y-2, STAL, (Spielberger et al., 1977)]. Smokers completed a
measure of nicotine dependence level [Fagerstrom Test for Nicotine
Dependence (FTND; Heatherton et al., 1991)], self-reported the number
of cigarettes currently smoked per day, and the number of years of
smoking over lifetime. Pack-years [(number of cigarettes per day/20) x
total number of years of smoking] were calculated for smokers. Com-
parable frequencies of smokers and non-smokers (30%) reported in-
termittent “recreational” use (i.e., <3 episodes/month) of cannabis or
cocaine during late adolescence or early adulthood. Prior to assessment,
participants’ urine was tested for five common illicit substances (i.e.,
THC, opiates, PCP, cocaine, amphetamines), and participants were
breathalyzed for recent ethanol consumption. No participant was po-
sitive for the above common illicit substances or ethanol at the time of
assessment.

2.3. Magnetic resonance imaging (MRI) acquisition and processing

MRI data were acquired on a 4.0 T Bruker MedSpec system using an
8-channel transmit-receive head coil (Siemens, Erlangen, Germany). A
Magnetization Prepared Rapid Gradient (TR/TE/TI = 2300/3/950 ms,
7° flip angle, 1.0 x 1.0 x 1.0 mm? resolution) sequence was used to
acquire 3D sagittal T1-weighted images for morphological analyses.
The publicly available FreeSurfer (v5.1) segmentation and cortical
surface reconstruction methods were used to obtain regional, bilateral
cortical, subcortical GM and total subcortical lobar white matter (WM)
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volume, and total intracranial volume (ICV) (all in mm®) (Dale et al.,
1999; Fischl and Dale, 2000; Fischl et al., 2004, 1999). All segmented
subcortical and parcellated cortical T1-weighted images were visually
inspected by one of the authors (TCD) for accuracy; any errors in seg-
mentation/parcellation were manually edited, reprocessed and again
inspected as previously described (Durazzo et al., 2014c). The final
segmented subcortical and parcellated cortical volumes passed all
quality requirements (Durazzo et al., 2011b). The subcortical regions of
interest (ROIs) interrogated were the total bilateral subcortical lobar
WM, bilateral thalamus, caudate, putamen, pallidum, amygdala, nu-
cleus accumbens, cerebellar cortex and cerebellar WM. Midline ROIs
included the brain stem as well as the total corpus callosum volume and
corpus callosum subregions (anterior, mid-anterior, central, mid-pos-
terior, and posterior). Individual ROI volumes were scaled to their
corresponding ICV and reported as the percentage of ICV.

2.4. Statistical analyses

2.4.1. Demographic and clinical variables

Demographic and clinical variables were compared between smo-
kers and non-smokers with t-tests and Fisher’s Exact Test, where in-
dicated

2.4.2. Primary analyses

To test our hypothesis of greater age-related subcortical volume loss
in smokers versus non-smokers, we employed generalized linear mod-
eling (GENLIN), and specifically tested for a smoking status (smoker vs.
non-smoker) by age interaction. In preliminary analyses comparing
smokers and non-smokers, similar magnitude group differences were
observed for the left and right hemisphere of bilateral regions/nuclei;
therefore, results for the summed volumes of bilateral ROIs are pre-
sented. Additionally, group differences across corpus callosum sub-
regions were highly consistent; thus results for the total corpus cal-
losum volume are only reported. Dependent measures were ROI
volumes (percent of ICV), and covariates included BDI and average
lifetime drinks/month (smokers and non-smokers were different on
these measures; see Table 1 and 3.1 below). Significant univariate ef-
fects for smoking status were followed-up with t-tests (two-tailed). Al-
though we predicted a priori that smokers exhibit smaller subcortical
volumes, we adopted a conservative approach and corrected the t-test
alpha level (p = 0.05) for multiplicity of tests with a modified Bon-
ferroni method (Sankoh et al., 1997), based on 11 ROIs and the inter-
correlations among ROIs for all participants (r = 0.63). This produced
an adjusted two-tailed alpha level of p < 0.022 for post-hoc t-tests for
each ROL. Interactions between smoking status and age were considered
significant at p < 0.05. Effect sizes for statistically significant differ-
ences in mean volume between smokers and non-smokers were calcu-
lated with Cohen’s d (Cohen, 1988).

2.4.3. Exploratory analyses

Statistically significant smoking status x age interactions were fur-
ther explored via a median split on age, which divided the sample into
four groups: younger non-smokers and smokers (22-45 years of age;
mean age of 35 years), and older non-smokers and smokers (46-70
years of age; mean age of 55 years). Younger non-smokers (n = 24) and
younger smokers (n = 17) were not different on any clinical or de-
mographic variable. Older non-smokers (n = 19) and older smokers
(n = 23) were equivalent on clinical and demographic variables, except
that older smokers had fewer years of education.

Two exploratory analyses were conducted on the basis of the age
median split for ROIs showing a significant smoking status x age in-
teraction in the Primary Analyses: 1) Slopes of volume across age were
statistically compared among the four groups via GENLIN, and group
differences on slopes were considered statistically significant at
p < 0.05. 2) Mean ROI volumes were compared across the four
groups. Main effects, interactions and pairwise t-tests (two-tailed;
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providing comparisons of mean volumes among the four groups) were
considered statistically significant at p < 0.05. Comparisons of slopes
and mean volumes between younger smokers and non-smokers were
adjusted for age because of the established relationship between age
and regional brain volumes. Comparisons of slopes and mean volumes
among older smokers and non-smokers were adjusted for age and
education; comparisons of slopes and mean volumes between younger
and older smokers were adjusted for pack-years.

2.4.4. FTND score

Associations between the 11 ROI volumes and cigarette pack-years
(measure of exposure magnitude) and FTND score (measure of nicotine
dependence level) were examined with linear regression; part (semi-
partial) correlations were reported, adjusting for age and lifetime
average drinks/month. Although we predicted that higher pack-years in
smokers are inversely related to all subcortical volumes, we corrected
the alpha level (p = 0.05) for the part correlations for multiplicity of
tests with the above described modified Bonferroni procedure; a two-
tailed p < 0.022 was considered statistically significant.

3. Results
3.1. Participant demographics and clinical variables

Smokers and non-smokers were equivalent on age, sex, percent of
Caucasians, level of anxiety symptomatology and education (see
Table 1). Smokers had significantly higher BDI scores, and consumed
more average drinks per month over lifetime (all p < 0.05). Although
statistically different between groups, the average BDI score for both
groups was in the normal range (i.e., < 10) and well below the cutoff
for mild depressive symptomatology (Richter et al., 1998). Participant
alcohol consumption did not approach a hazardous level [see (McKee
et al., 2007; Mertens et al., 2005)].

3.2. Primary analyses: main effects and interactions for smoking status and
age

Significant smoking status x age interactions were observed for
volumes of the total subcortical WM [Xz(l) = 4.40, p = 0.036], total
corpus callosum [xz(l) = 4.50, p = 0.034], thalamus [Xz(l) = 4.29,
p = 0.038], and cerebellar cortex [x2(1) = 4.61, p = 0.032]; in these
regions, smokers showed significantly greater volume loss with in-
creasing age than non-smokers (see Figs. 1 and 2). Smokers also
showed trends for greater age-related volume loss in the brainstem
(p = 0.08) and caudate (p = 0.10) Except for the pallidum, cerebellar
WM and brain stem, age was inversely related to volumes in all other
ROIs (all p < 0.01). Greater lifetime average drinks/month, although
low, was associated with smaller total corpus callosum volume
(p = 0.018). No main effects were observed for smoking status in any
ROI (all p > 0.12). Findings were essentially unchanged when female
participants were removed from the analyses. The greater volume loss
in smokers in the above regions was similar in the left and right
hemispheres in bilateral ROIs (data not shown).

3.3. Exploratory analyses comparing younger and older groups

3.3.1. Comparisons of slopes of volume across younger smokers and
non-smokers, as well as older smokers and non-smokers were con-
ducted with GENLIN for the subcortical WM, total corpus callosum,
thalamus, and cerebellar cortex, regions in which smokers showed
greater age-related volume loss in our Primary Analyses. Older smokers
showed greater age-related volume loss than younger non-smokers in
the subcortical WM (B = —0.39, p = 0.021), total corpus callosum
(= —0.05, p=0.014), and cerebellar cortex (B = —0.11,
p = 0.046). Older non-smokers had greater age-related volume loss
than younger non-smokers in the total corpus callosum (f = —0.04,
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Fig. 1. (A) Subcortical lobar white matter volume across age for Non-smokers and Smokers. (B) Total corpus callosum volume across age for Non-smokers and Smokers.

p = 0.020). No other group differences were observed (see Figs. 3-6 ).
Both older smokers and non-smokers showed moderate strength asso-
ciations between age and subcortical WM, total corpus callosum, and
thalamus volumes, while both younger non-smokers and smokers de-
monstrated very weak associations between age and volumes of all
ROIs.

3.3.2. Smoking status (smokers vs. non-smokers) x age group (older
vs. younger participants) interaction GENLIN models were conducted
for the subcortical WM, total corpus callosum, thalamus, and cerebellar
cortex, where smokers showed greater age-related volume loss in the
Primary Analyses. Main effects of age group (younger vs. older) were
observed for the total corpus callosum [xz(l) = 4.24, p = 0.039],
thalamus [xz(l) = 9.43, p = 0.002], cerebellar cortex [Xz(l) = 13.25,
p < 0.001] and a trend for subcortical WM [Xz(l) = 3.71,p = 0.054],
where the younger participants had larger volumes than the older
participants. No significant main effects were observed for smoking
status (all p > 0.051). Trends for a smoking status x age group inter-
action were observed for the total corpus callosum (p = 0.055) and
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thalamus (p = 0.062), which were driven by smaller mean volumes in
older smokers. Pairwise t-tests indicated older smokers had smaller
volumes than younger and older non-smokers in the above four ROIs,
and smaller volumes than younger smokers in the total corpus cal-
losum, thalamus, and cerebellar cortex (all p < 0.05). No other sig-
nificant mean volume differences were observed (see Table 2). In
comparisons between older smokers and older non-smokers, greater age
was related to smaller subcortical WM, total corpus callosum, and
thalamic volumes (all p < 0.01), but education was not associated
with any volume (all p > 0.50). Age was not related to volumes in
comparisons between younger smokers and younger non-smokers (all
p > 0.40).

3.4. Associations of pack-Years and FTND with regional subcortical
volumes in smokers

In smokers, higher pack-years showed significant negative associa-
tions of moderate strength with the volumes for total amygdala (see
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Fig. 2. (A) Thalamus volume across age for Non-smokers and Smokers. (B) Cerebellar cortex volume across age for Non-smokers and Smokers.
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Fig. 7), nucleus accumbens, total corpus callosum and subcortical WM
after adjusting for age and lifetime average drinks/month (see Table 3);
the magnitudes were generally similar for bilateral structures (data not
shown). A higher FTND score was associated with lower total corpus
callosum volume (r = —0.37, p = 0.007) after adjusting for age and
lifetime average drinks/month in smokers; no other significant asso-
ciations between FTND and subcortical volumes were observed. The
magnitudes and directions of the associations between pack-years,
FIND and volumes across ROIs for younger and older smokers were
largely equivalent.

4. Discussion

The primary findings of this 4 T quantitative MRI study were: 1)
Otherwise healthy adult smokers demonstrated greater age-related
volume loss than non-smokers in the bilateral and total (sum of left and
right hemisphere) subcortical WM, thalamus, and cerebellar cortex, as
well as the total corpus callosum; 2) Older smokers showed significantly
smaller volumes than younger and older non-smokers in the subcortical
WM, corpus callosum, thalamus and cerebellar cortex, as well as
smaller volumes than younger smokers in the corpus callosum, tha-
lamus, and cerebellar cortex; 3) In smokers, greater pack-years were
associated with smaller amygdala, nucleus accumbens, corpus callosum
and subcortical WM volumes.

The greater age-related volume loss in smokers was pronounced in
the total lobar WM and corpus callosum. The thalamus and cerebellar
cortex were the only subcortical GM ROIs that showed statistically

Table 2

significant greater age-related volume loss in smokers. Comparisons of
slopes of volumes across age between younger and older participants
suggested the greater age-related volume loss observed in smokers in
the above regions was primarily driven by significantly larger volume
loss with age in older smokers relative to younger non-smokers.
Correspondingly, older smokers were the only group to show significant
associations between age and subcortical WM, corpus callosum, tha-
lamus and cerebellar cortex volume. There were no significant differ-
ences among smokers and non-smokers, as a whole, on any ROI volume.
However, older smokers had smaller total lobar WM, corpus callosum,
thalamus and cerebellar cortex volumes than younger non-smokers,
younger smokers and older non-smokers; the largest magnitude differ-
ences were between younger non-smokers and older smokers, reflecting
the interacting effects of age and smoking status on these regions. No
significant differences were observed between younger non-smokers,
younger smokers and older non-smokers; the effect sizes from these
comparisons were generally weak, indicating the lack of differences
between these groups was not a function of inadequate power related to
group size.

A central mechanism hypothesized to be related to the neurobio-
logical abnormalities observed in smokers is increased brain oxidative
stress (OxS) that is promoted by elevated free radical species and de-
creased endogenous antioxidant levels (Durazzo et al., 2014a; Swan and
Lessov-Schlaggar, 2007). The gas and particulate phases of cigarette
smoke have extremely high concentrations of short-and-long-lived free
radical species and other oxidizing agents (Ambrose and Barua, 2004;
Valavanidis et al., 2009). In addition to increased free radical levels,

Comparisons of Regional Volumes (% of intracranial volume) between Younger and Older Smokers and Non-Smokers.

Measure YoungNS YoungS OlderNS OlderS Effect Size (Cohen’s d)
n=24 n=17 n=19 n =23
YoungNS YoungNS YoungNS YoungS YoungS OlderNS
vs. vs. vs. vs. vs. vs.
YoungS OlderNS OlderS OlderNS OlderS OlderS
Subcortical white matter 36.19 35.17 35.62 33.58 0.26 0.15 0.75* 0.12 0.43 0.55*
(4.04) (3.71) (3.70) (3.70)
Total corpus callosum 0.247 (0.039) 0.239 (0.037) 0.246 (0.042) 0.218 (0.042) 0.02 0.03 0.72* 0.18 0.53* 0.67*
Thalamus 1.05 1.06 1.00 0.93 0.21 0.29 0.72* 0.35 0.53* 0.51*
(0.19) (0.19) (0.13) (0.15)
Cerebellar cortex 6.93 6.74 6.38 5.74 0.15 0.50 0.97** 0.32 0.81%* 0.58*
(1.22) (1.25) (0.99) (1.23)

Note. Mean (standard deviation); YoungNS: younger non-smokers; YoungS: younger smokers; OlderNS: older non-smokers OlderS: older smokers; *p

tests (two-tailed).
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< 0.05, **p < 0.01 for pairwise t-
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Fig. 7. Association of amygdala volume with pack-years.

age-related volume loss in the lobar WM and across the entire corpus
callosum; however, the results of the exploratory analyses suggested
this effect was largely driven by the older smokers (46-70 years of age).
Collectively, our findings in young-to-elder adults suggest the chronic
OxS imposed by cigarette smoking may interact with the OxS associated
with normal aging, which may amplify degeneration in subcortical
brain regions that are either highly vulnerable to OxS (e.g., lobar sub-
cortical WM, hippocampus) and/or have a high metabolic activity (e.g.,
cerebellar cortex, hippocampus, and thalamus).

Greater cigarette pack-years in smokers were associated with
smaller amygdala, nucleus accumbens, total corpus callosum and sub-
cortical lobar WM volumes, while higher level of nicotine dependence
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Table 3
Associations between Regional Volumes and Pack-Years in Smokers.
Region r p-value
Amygdala —0.49 0.001
Nucleus Accumbens —0.42 0.004
Total Corpus Callosum —0.38 0.006
Subcortical Lobar White Matter -0.35 0.016
Caudate -0.32 0.028
Putamen —0.26 0.049
Thalamus —0.25 0.09
Brain Stem —0.21 0.19
Pallidum -0.12 0.48
Cerebellar Gray Matter —0.07 0.65
Cerebellar White Matter —0.02 0.91

Note. r-values are part (semi-partial) correlations adjusted for age and lifetime average
drinks/month; p < 0.022 is statistically significant.

smoking is associated with markedly elevated carboxyhemoglobin le-
vels (Deveci et al., 2004), altered mitochondrial respiratory chain
function (Alonso et al., 2004), and induction of proinflammatory cy-
tokine release by peripheral and central nervous system glial cells
(Mazzone et al., 2010), which combine to further escalate cerebral OxS.
It is well established that OxS is directly associated with damage to
membrane lipids, proteins, carbohydrates, DNA and RNA of neuronal,
glial, and vascular tissue of the brain [see (Durazzo et al., 2014a) and
references therein]. Oligodendrocytes (the myelin-producing cells of
the brain), granular neurons of the cerebellar cortex, and neurons in
several hippocampal subregions are highly susceptible to OxS (Smith
et al., 1999; Wang and Michaelis, 2010). While not universally accepted
[see (Salmon et al., 2010)], increasing OxS burden with aging is sug-
gested to be a fundamental mechanism contributing to neurodegen-
eration in normal aging (Halliwell, 2006; Zimniak, 2011). We pre-
viously observed that current and former cigarette smoking in
cognitively normal elders (Durazzo et al., 2016a, 2014b) and current
smoking in those with probable Alzheimer disease (Durazzo et al.,
2016a) are associated with significantly elevated cerebrospinal fluid
isoprostane concentration, which is a biomarker of increased central
nervous system OxS. In these groups of elders (76 * 6 years of age),
higher isoprostane concentration was related to smaller hippocampal
volume. Consistent with this relationship, young-to-older adult smokers
showed greater age-related volume loss than non-smokers in the total
hippocampus and several hippocampal subregions (Durazzo et al.,
2013). In the current study, adult smokers, as a whole, exhibited greater
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was only related to smaller corpus callosum volume. This pattern sug-
gests that greater amount/duration of cigarette exposure rather than
nicotine dependence level was related to smaller tissue volume in most
subcortical regions, consistent with findings for cortical volumes/den-
sity (Durazzo et al., 2010; Pan et al., 2013; Sutherland et al., 2016).
Subregions of the amygdala (Mineur et al., 2016) and nucleus ac-
cumbens (Crespo et al., 2006) have a high density of cholinergic re-
ceptors, but is it is not clear if the chronic upregulation and decreased
sensitivity of nicotinic receptors associated with nicotine dependence is
related to the morphological integrity of these tissue. Additionally, as
the FTND is an ordinal metric of limited range, it may not be as robust a
predictor as pack-years.

This study has limitations that may affect the generalizability of our
findings. Although smokers demonstrated greater age-related volume
loss in several ROIs, a longitudinal design is required to verify the
findings of this cross-sectional study. The formation of the older and
younger groups was based on a median split of the participants’ age
range, yielding groups above and <45 years of age. Consequently, our
operationalization of older and younger groups, and the corresponding
volumetric findings, should be considered preliminary. Undocumented
premorbid/comorbid group differences in lifestyle or subclinical bio-
medical conditions (e.g., diet/nutrition, exercise, subclinical pulmonary
or cardiovascular dysfunction) and/or genetic polymorphisms (Mon
et al., 2013) may have influenced the results. Since this study excluded
individuals with clinically significant smoking-related morbidity, it is
possible that the age-related effects were underestimated in this healthy
cohort (Durazzo et al., 2014a). Additionally, given the subcortical lobar
WM was not further divided into major lobes, further investigation
needs to examine any regional specificity of age-related WM volume
loss in smokers. Finally, the small number of females precluded as-
sessment of sex effects.
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5. Conclusions

The study results provide novel evidence that cigarette smoking is
associated with accelerated age-related volume loss in multiple sub-
cortical brain regions. The findings also suggested the smoking-related
effects on subcortical WM and GM regions/nuclei were most apparent
in the older age group, starting at 46 years of age in this cohort. These
data offer further insight into the potential neurobiological substrates
related to the neuropsychological abnormalities observed in cigarette
smokers across adulthood (Durazzo et al., 2016b, 2010), and may have
implications for cortical-subcortical structural and functional con-
nectivity in smokers with increasing age. Why are these findings and
continued research on the neurobiological consequences of smoking
clinically relevant? The fundamental reasons are that over 1 billion
people worldwide are cigarette smokers, and smoking-related diseases
kill at least 6 million individuals annually (WHO, 2015). Understanding
the effects of chronic smoking on brain micro-and-macrostructural in-
tegrity, biochemistry, functional and structural connectivity, as well as
their functional correlates is required to inform the development of
more efficacious smoking cessation interventions (Addicott et al., 2014,
2015; Durazzo et al., 2014a, 2016¢, 2015).
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