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The results of many studies support the influence of the
corticotropin-releasing factor (CRF) system on ethanol
(EtOH) consumption and EtOH-induced neuroadapta-
tions that are critical in the addiction process. This
review summarizes the preclinical data in this area after
first providing an overview of the components of the
CRF system. This complex system involves hypothala-
mic and extra-hypothalamic mechanisms that play a role
in the central and peripheral consequences of stressors,
including EtOH and other drugs of abuse. In addition,
several endogenous ligands and targets make up this
system and show differences in their involvement in
EtOH drinking and in the effects of chronic or repeated
EtOH treatment. In general, genetic and pharmacologi-
cal approaches paint a consistent picture of the impor-
tance of CRF signaling via type 1 CRF receptors (CRF,)
in EtOH-induced neuroadaptations that result in higher
levels of intake, encourage alcohol seeking during absti-
nence and alter EtOH sensitivity. Furthermore, genetic
findings in rodents, non-human primates and humans
have provided some evidence of associations of genetic
polymorphisms in CRF-related genes with EtOH drink-
ing, although additional data are needed. These results
suggest that CRF, antagonists have potential as pharma-
cotherapeutics for alcohol use disorders. However, given
the broad and important role of these receptors in adap-
tation to environmental and other challenges, full antag-
onist effects may be too profound and consideration
should be given to treatments with modulatory effects.
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Interest in stress and stress-associated pathways for their
roles in alcohol (ethanol, EtOH) use and related symp-
toms has a long history. The focus has evolved over time
from examination of behavioral effects of stressors on
EtOH-associated traits and effects of EtOH on stress-axis
measures, such as corticosterone (CORT) and adrenocor
ticotropin hormone (ACTH) levels, to investigation of the
relevance of central and peripheral peptides and receptors.
In the last decade, a number of excellent reviews have
described much of this literature and have influenced the
authors’ perspectives (Allen et al. 2011; Armario 2010; Burke
& Miczek 2014; Ciccocioppo et al. 2009; Clapp et al. 2008;
Crabbe et al. 2006; Gilpin 2012; Griffin 2014; Heilig & Koob
2007; Heilig et al. 2010; Koob 2013; Leggio et al. 2010; Low-
ery & Thiele 2010; Lu & Richardson 2014; Martin-Fardon
etal. 2010; Rivier 2014; Roberto etal. 2012; Ryabinin &
Weitemier 2006; Ryabinin etal. 2012; Shalev etal. 2010;
Silberman et al. 2009; Sommer & Saavedra 2008; Spanagel
et al. 2014; Sprow & Thiele 2012; Thiele 2012; Weiss et al.
2001; Wong & Schumann 2012; Zorrilla et al. 2013, 2014).
Because there is already an excellent, recent literature in
this area, we do not comprehensively repeat this informa-
tion in the current review. Rather, this article reviews the
preclinical literature investigating the importance of the
corticotropin-releasing factor (CRF) system specifically in
EtOH consumption and neuroadaptation-related behaviors.
We also include comments on pertinent human data and
suggest future perspectives.

The CRF System

Corticotropin-releasing factor has also been known as
corticotropin-releasing hormone or CRH and is a 41-amino
acid neuropeptide critically involved in the regulation of
neuroendocrine and behavioral responses to stress. An
intricate CRF-mediated system, involving hypothalamic and
extra-hypothalamic mechanisms, regulates peripheral and
central actions that allow for preparation and adaptation to
environmental challenges or stressors (Bale & Vale 2004
de Kloet 2013; Hauger etal. 2006). The seminal work of
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Vale and colleagues identified CRF as the primary molecule
responsible for the activation of this neuroendocrine stress
cascade, the hypothalamic—pituitary—adrenal (HPA) axis
(Bale & Chen 2012; Rivier & Vale 1983a,1983b; Rivier et al.
1982; Spiess etal. 1981; Swanson etal. 1983; Vale et al.
1981). Activation of the HPA axis is triggered by neurons of
the medial dorsal parvocellular region of the paraventricular
nucleus (PVN) of the hypothalamus (Armario 2006, 2010;
Herman et al. 2003). This region is rich in CRF and other
neuropeptides, such as vasopressin (arginine-vasopressin;
AVP). Although the role of AVP in activating the HPA axis per
se appears to be limited, AVP can significantly increase the
effects of CRF (Rivier & Vale 1983a,1983b; Sawchenko et al.
1984; Vale et al. 1981, 1983).

Paraventricular nucleus neurons release CRF at the
level of the median eminence, inducing (via the hypophy-
seal portal system) the release of ACTH by corticotrope
cells of the anterior pituitary. In turn, ACTH activates the
secretion of the glucocorticoid, CORT (cortisol in humans)
from the zona fasciculata of the adrenal cortex. Corticos-
terone plays an important role in regulating a number of
physiological functions and modulates CRF signaling via a
hypothalamic negative feedback mechanism that decreases
CRF-mediated HPA axis activation; CORT also regulates
an extra-hypothalamic positive regulatory mechanism that
increases CRF activity (Bale & Vale 2004; Shepard et al.
2006). In the mammalian brain, CRF is identified in the PVN,
but high levels of CRF are also found outside of the hypothala-
mus in structures such as the central nucleus of the amygdala
(CeA), bed nucleus of the stria terminalis (BNST), hippocam-
pus, thalamus, midbrain and locus coeruleus (Merchenthaler
etal. 1982, 1984; Morin etal. 1999; Steckler & Hols-
boer 1999; Swanson etal. 1983). Glucocorticoid-induced
increases in CRF activity have been particularly well charac-
terized in the CeA and BNST (Shepard et al. 2006; Tran &
Greenwood-Van Meerveld 2012). The extra-hypothalamic,
neuroregulatory actions of CRF contribute to the integra-
tion of endocrine, sympathetic, behavioral and cognitive
responses to stress, and are particularly involved in the
emotional component of stress (Gilpin 2012; Hauger et al.
2006; Muller et al. 2003; Walker & Davis 2008; Walker et al.
2009). Although stressors initiate a series of CRF-mediated
neuronal responses that can be beneficial and adaptive,
dysregulation of CRF systems can be deleterious, and has
been linked to a wide range of disorders including anxiety,
depression, obsessive-compulsive disorder, post-traumatic
stress disorder and addiction (Cador et al. 1993; Cole et al.
1990; Haass-Koffler & Bartlett 2012; Heilig & Egli 2006; Koob
& Kreek 2007; Koob & Le Moal 2001; Sarnyai et al. 2001).

CRF system endogenous ligands, binding
targets and pathways

Figure 1 summarizes the endogenous ligands, targets and
target distribution, and illustrates the affinity of each CRF
family neuropeptide for each CRF-related binding target.
CRF actions are exerted through two Gs-protein coupled
receptors, CRF type-1 (CRF,;) and type-2 (CRF,), which
share about 70% amino acid sequence identity (Bale &
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Vale 2004; Hauger et al. 2006). Corticotropin-releasing fac-
tor shows greater affinity for CRF; (Herman et al. 2003;
Vaughan et al. 1995) and CRF-initiated activation of the HPA
axis is mediated by CRF; (Armario 2006; Bale & Vale 2004).
Corticotropin-releasing factor type-1 expression is found in
many brain regions (Justice et al. 2008; Korosi et al. 2006,
2007; Kihne et al. 2012; Van Pett et al. 2000). In the cortex
and hippocampus, CRF, is present on glutamatergic neu-
rons, whereas CRF; is found on y-aminobutyric acid (GABA)
neurons in the striatum (including the nucleus accumbens;
NAcc) and dopamine (DA) neurons in the midbrain (including
the ventral tegmental area; VTA) (Bonfiglio et al. 2011; Lemos
et al. 2012; Refojo et al. 2011). Corticotropin-releasing factor
type-2 is also widely expressed in the central nervous sys-
tem and found peripherally (Bittencourt & Sawchenko 2000;
Korosi et al. 2006, 2007; Lukkes et al. 2011; Palchaudhuri
et al. 1999; Van Pett et al. 2000). Although there is significant
overlap in brain distribution of CRF; and CRF, (Hauger et al.
2006; Lukkes et al. 2011), important differences in distribu-
tion have also been found. For example, CRF,, but not CRF;,
is present in the ventromedial and medial preoptic nuclei
of the hypothalamus; CRF,, but not CRF,, is expressed
in the NAcc and the CeA; and both CRF; and CRF, are
present in the medial nucleus of the amygdala (Bittencourt &
Sawchenko 2000; Hauger et al. 2006; Van Pett et al. 2000). A
primary CRF,-mediated regulation of serotonergic neurons
in the dorsal raphe (DR), with implications for anxiety and
depression, has also been described (Hauger et al. 2006;
Meloni et al. 2008).

Corticotropin-releasing factor also binds to CRF-binding
protein (CRF-BP), which is found centrally and peripherally
(Alderman & Bernier 2007; Manuel et al. 2014; Potter et al.
1992). Several central locations are listed in Figure 1. The CeA
is a particularly CRF-BP dense region (Alderman & Bernier
2007, Potter et al. 1992). Some of the proposed functions of
CRF-BP are to restrict transport/release of CRF in some cen-
trally located pathways (Potter et al. 1992), aid in protecting
CRF from degradation once it has been released (Seasholtz
et al. 2002) and modulate CRF-induced potentiation of glu-
tamate receptor function via CRF, actions (Ungless et al.
2003).

The complexity of the CRF system is further increased
by the existence of additional endogenous agonists.
Corticotropin-releasing factor receptors can be activated
by the urocortin (Ucn) family of neuropeptides: Ucn,;, Ucn,
and Ucng. Urocortin, binds with similar affinity to CRF;,
CRF, and CRF-BR, whereas Ucn, and Ucng bind primarily to
CRF, (Bittencourt et al. 1999; Lewis et al. 2001; Reyes et al.
2001; Ryabinin et al. 2012; Vaughan et al. 1995). Urocortin,
is predominantly expressed in the centrally projecting
Edinger—Westphal (EWcp) nucleus (Bittencourt et al. 1999;
Kozicz et al. 1998; Ryabinin et al. 2005; Vaughan et al. 1995).
Note that two divisions of the EW have been named EWcp
and EWpg (preganglionic), based on cell groups and projec-
tions (Kozicz et al. 2011). Cells in the EWcp contain stress-
and feeding-related neuropeptides, such as Ucn,, whereas
the EWpg contains neurons that control oculomotor function
and send cholinergic inputs to the ciliary ganglion. Urocortin,
and Ucn, are more widely distributed than Ucn;. Among
other structures, Ucn, is present in the hypothalamus (PVN
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Endogenous
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Related Binding
Targets
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Binding Targets
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CRF,

Found in cerebral
cortex,
hippocampus, bed
nucleus of the stria terminalis,
terminalis, nucleus basolateral
accumbens,
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raphe, lateral
septum,
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nucleus of the
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periventricular
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Binding
Protein

Found in hippocampus,
bed nucleus of the stria
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localized with CRF,
and/or CRF, receptors. In
humans, also found in
liver and circulation. CRF
binding protein is also
detected in non CRF-
related brain regions

* Species specific binding

Figure 1: Binding relationships of CRF-family peptides and their targets. CRF binds with high affinity to CRF; and CRF-BP and with
lower affinity to CRF,. Ucn; binds with high affinity to CRF;, CRF, and CRF-BP. Ucn, and Ucns are selective for CRF, in all species;
Ucn, has an affinity for CRF-BP in certain species. Those with the highest affinity for the binding target are placed closest to that target
while those with the lowest affinity are placed farthest away. The locations shown for CRF,, CRF, and CRF-BP are not inclusive, but are
those most relevant to this review. For additional information, see De Souza (1995); Hauger et al. (2006); Huising et al. (2008); Kiihne

etal. (2012).

and arcuate nucleus) and the locus coeruleus, and Ucns is
expressed in several brain structures, including the BNST
and the medial nucleus of the amygdala (Cavalcante et al.
2006; Deussing et al. 2010; Lewis et al. 2001; Li et al. 2002,
Reyes et al. 2001; Tanaka et al. 2003).

The CRF system has a key role in mood disorders (Aubry
2013; Kormos & Gaszner 2013). Activation of CRF; and CRF,
has been associated with negative emotionality, anxiety-like
behavior and the behavioral responses to stress, with CRF,
thought to be responsible for the initiation of such responses
and CRF, mediating termination and recovery (Coste et al.
2006; Hauger et al. 2006; Janssen & Kozicz 2013). The roles
of CRF; and CRF, in behavior have also been interpreted with
regard to their involvement in responses to (real or perceived)
escapable vs. inescapable stressors. For example, CRF,
mediates active defensive responses to escapable stressors,
and CRF, mediates responses to inescapable, uncontrollable
stressors that could be associated with anxiety and depres-
sion vulnerability (Hauger et al. 2006). The involvement of
CRF and Ucn peptides in stress-induced feeding behavior
has received considerable attention (Stengel & Tache 2014),
and mounting evidence is supporting involvement of CRF and
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Ucns in different aspects of social behavior (for a review, see
Hostetler & Ryabinin 2013).

Overall, CRF systems play an important role in regulating a
number of functions with key implications for adaptive behav-
ior, motivation and emotion. Over the last three decades,
special emphasis has been placed on the understand-
ing of the behavioral relevance of stress- and drug-induced
long-term changes in CRF system neurophysiology. This brief
description does not do justice to a rich literature pertaining
to a wide range of behaviors that involve CRF, and CRF, sig-
naling, and the reader is referred to the reviews cited above.
In the next section, we focus on the role of CRF and its recep-
tor in the context of addiction, and specifically its importance
in EtOH intake, changes in intake and behavioral traits that
reflect neuroplasticity induced by chronic EtOH exposure.
Figure 2 illustrates some of the central CRF-related neuro-
circuitry that may be involved in EtOH-related phenotypes
discussed in this review. For example, the CeA and BNST
play important roles in negative emotional states that drive
chronic EtOH use in some individuals; the basolateral amyg-
dala (BLA) further affects this circuit. The periaqueductal
gray, in its role as an important functional interface between

Genes, Brain and Behavior (2015) 14: 98—135
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Figure 2: Diagram of central CRF-related neurocircuitry and interactions with other neurotransmitter systems. In this figure,
we concentrate on the CRF neurocircuitry that we discuss in this article in relationship to EtOH drinking and neuroadaptation-related
phenotypes; however, not all potentially relevant regions and pathways are represented. Colored circles within each brain region denote
the CRF-related receptor or CRF-BP that is found in that region, with colors defined in the figure. Lines and arrows indicate the projections
from one specific brain region to another, with the color denoting the primary transmitter or peptide. CRF projection, solid dark blue
line and arrow; speculated CRF projections, dashed dark blue line and arrow; DA projection, solid dark green line and arrow; GABA
projection, solid red line and arrow; glutamate projection, solid green line and arrow; norepinephrine projection, solid brown line and
arrow; serotonin projection, solid yellow line and arrow; Ucn; projection, solid light blue line and arrow. Brain regions: BLA, basolateral
nucleus of the amygdala; HIPP, hippocampus; LH, lateral hypothalamus; LS, lateral septum; NTS, nucleus of the solitary tract; PFC,
prefrontal cortex; . © denotes that there are multiple divisions within this region that contain varying levels of each of the noted binding
targets. These subdivisions may inferentially alter the roles CRF plays in EtOH-related behaviors. For additional information, see Ahima
et al. (1991); Bittencourt et al. (1999); Brown (1986); Cowen et al. (2004); Duvarci and Pare (2014); George and Koob (2010); Gilpin (2012);
Gray and Magnuson (1992); Haass-Koffler and Bartlett (2012); Handa and Weiser (2014); Hauger et al. (2006); Justice et al. (2008); Korosi
et al. (2006); Kihne et al. (2012); Lu and Richardson (2014); Myers et al. (2014); Pitts et al. (2009); Potter et al. (1992); Radley (2012);
Reul and Holsboer (2002); Reyes et al. (2008); Ryabinin and Weitemier (2006); Silberman and Winder (2013); Silberman et al. (2013);
Sinha (2008); Van Pett et al. (2000); Wise and Morales (2010).

the forebrain and lower brainstem, has a probable effect
as an integrator of behavioral responses to stressors, both
internal and external. The prefrontal cortex has well-known
executive functions that affect not only craving and habit
formation via interactions with other brain nuclei, such as the
dorsal striatum (not shown here), but also basic reinforce-
ment and conditioned reinforcement via the NAcc shell and
core, respectively, which sustain use and impact relapse.
Also, receptor types found in the included brain regions and
transmitters in neural pathways that direct communication
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are included in Fig. 2. For example, the PVN is a critical regu-
lator of stress responses and is modulated by a serotonergic
projection from the DR. For additional important information,
the reader is referred to papers and figures that consider
disorders that are co-morbid with addiction (Gilpin 2014,
Reul & Holsboer 2002) and articles that discuss important
functional differences of sub-regions of structures, such as
the prefrontal cortex (George & Koob 2010; Lu & Richardson
2014; Marchant et al. 2014) and CeA (Duvarci & Pare 2014,
Gilpin 2014).
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Addiction and the CRF system: a common
pathway for drugs of abuse

One psychopathology commonly associated with CRF dys-
regulation and stress is drug addiction. All drugs of abuse,
regardless of specific mechanism of action, induce activa-
tion of CRF signaling and the HPA axis (for reviews, see
Armario 2010; McReynolds et al. 2014), and their effects are
modulated by stress (Aguilar etal. 2013; Picetti etal.
2013; Roberts et al. 1995; Stephens & Wand 2012). Addi-
tionally, these addictive substances produce important
CRF-mediated and stress-influenced long-lasting neuroad-
aptations that have been suggested to explain key aspects
of the development and maintenance of the addictive phe-
notype (Koob 2013; Koob & Le Moal 2001; Leyton & Vezina
2014; Robinson & Berridge 1993, 2008; Wise & Koob 2014,
Zorrilla et al. 2014).

All abused drugs sensitize mesolimbic DA mechanisms
and induce behavioral sensitization to their stimulant effects;
in fact, behavioral, or psychomotor, sensitization has been
used extensively as a measurable phenotype of such under
lying neuroplasticity (Robinson & Berridge 1993, 2008;
Sanchis-Segura & Spanagel 2006). Mesocorticolimbic DA
signaling has been associated with different components
of positive reinforcement and reward processes, including
activation, motivation, incentive salience, ‘wanting’ (but
not necessarily ‘liking’), effort, goal-directed behavior and
reward-related learning (Berridge & Kringelbach 2013; Sala-
mone & Correa 2012; Schultz 2013; but also see Wise 2008).
Long-lasting upregulation of DA mechanisms has been linked
to unmanageable pathological motivation and compulsive
drug seeking and taking characteristic of addiction. Evidence
indicates that stress produces a CRF-mediated activation of
DA systems that is comparable to that induced by addictive
substances (Sinha 2008). This is, moreover, an effect that
appears to be especially critical during adolescence, a time
when maturing DA systems show increased sensitivity
to stress hormones (Burke & Miczek 2014; Sinclair et al.
2014). Cross-sensitization between stressors and addictive
drugs, including EtOH (Roberts et al. 1995), has also been
described. Additionally, research on humans has shown that
stress elevates striatal extracellular DA levels (Adler et al.
2000; Soliman et al. 2008). Stress and CRF activation can
therefore be understood as key facilitators of drug-induced
neuroplasticity in mesocorticolimbic DA systems associated
with dysregulation of positive reinforcement mechanisms in
addiction.

Abused drugs and stress also produce enduring
changes within CRF systems. Long-lasting dysregulation
of extra-hypothalamic CRF mechanisms (primarily extended
amygdala, and also prefrontal cortex neurocircuitry) have
been linked to the negative emotionality, anxiety and vulner
ability to stress seen in addicts (Gerra et al. 2014; Thorberg &
Lyvers 2006; Valdez & Koob 2004). As discussed in greater
detail below for EtOH, drug-induced activation of brain
stress response systems sensitizes over time, especially
with repeated withdrawal, and this sensitization has been
seen to persevere into protracted abstinence, critically con-
tributing to the persistence of relapse. Extra-hypothalamic
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CRF dysregulation is a key biological mechanism underlying
manifestation of negative emotional states associated with
drug abstinence, even well beyond the time when physical
symptoms of withdrawal are seen (Koob 2014; Koob & Le
Moal 2008). However, important HPA axis-dependent effects,
such as upregulation of glucocorticoid receptors (GRs) in the
CeA, associated with protracted EtOH abstinence, indicate
that both hypothalamic and extra-hypothalamic mechanisms
interact and participate in critical aspects of long-lasting
drug-induced neuroadaptation (Vendruscolo etal. 2012).
Overall, strong scientific support suggests that dysregulation
of positive and negative reinforcement mechanisms, which
underlie pathological motivation associated with drug craving
and increased negative emotionality and vulnerability to
stress, critically involve the CRF system.

Corticotropin-releasing factor and stress-axis involvement
have received particular attention in the context of the inves-
tigation of the neurobiological effects of EtOH. At a neu-
rophysiological level, laboratory animal and human research
show that systemic administration of EtOH increases CRF
and induces HPA axis activation (Jenkins & Connolly 1968;
Pastor et al. 2008, 2011; Rivier 1996). Although the pre-
cise mechanism by which EtOH stimulates stress systems
and hormones is yet to be fully described, growing evi-
dence indicates that this is a central, CRF/CRF,-mediated
effect (recently reviewed by Armario 2010). Convincing sup-
port for this conclusion arises from a number of studies
showing HPA axis activation with systemic or intracere-
broventricular (ICV) administration of EtOH (Lee et al. 2004,
Ogilvie etal. 1998), as well as a blunted HPA response
to EtOH in CRF; null mutant mice (Lee etal. 2001b; Pas-
tor et al. 2008) or after administration of a CRF antiserum
(Rivier et al. 1984).

Hypothalamic regulation of glucocorticoids is altered
by a history of EtOH exposure; human and rodent data
show that repeated EtOH produces an increase in baseline
levels of CORT, with a flattening of natural glucocorticoid
circadian level variations and a diminished response to
stress challenges (Errico etal. 1993; Lee & Rivier 1997,
Lee etal. 2001a; Rasmussen etal. 2000; Wand & Dobs
1991). However, the effects of chronic EtOH and EtOH
withdrawal on CRF systems are complex and depend on
EtOH administration procedures, time of measurement and
whether other stressful stimuli are included in the study
design (for a review, see Allen etal. 2011). For example,
one study examined the effect of 14 days of continuous
EtOH vapor exposure in Sprague—Dawley rats and found a
decrease in the number of CRF-binding sites in the pituitary
when tissue was taken immediately after withdrawal from
EtOH (Dave et al. 1986). However, in another study, again in
Sprague—Dawley rats, 7 days of continuous vapor exposure
were associated with decreased hypothalamic CRF content
in tissue obtained immediately after withdrawal (Rivier et al.
1984). A change in the same direction in these two studies
suggests that the decrease in receptors was not a compen-
satory change; however, the methods were not identical in
the two studies, complicating interpretation. A number of
studies examining CRF-related effects have used intermit-
tent, rather than continuous, vapor exposure procedures. For
example, using a 6 h/day, 8-day EtOH vapor exposure period,

Genes, Brain and Behavior (2015) 14: 98—135



Hypothalamus

Anterior Pituitary
CRF1 Activation

Adrenal Cortex
ACTH-R Activation

Hypothalamic GR Activation:
Negative Feedback (Decreases CRF)

Extra-Hypothalamic GR Activation :
Positive Regulation (Increases CRF)

CREF, stress, ethanol consumption and neuroadaptation

Ethanol-Induced
Neuroadaptation
Reflected in
Behavioral

Change

Neuroplasticity
Underlying Ethanol-

Induced
Neuroadaptation

Arrows: Central Pathways; Peripheral Pathways

Figure 3: The HPA axis and central CRF processes in EtOH-induced neuroadaptations. EtOH activates the HPA axis and induces
a well-known cascade of events: CRF is released from the hypothalamus and binds to CRF; in the anterior pituitary, resulting in ACTH
release; ACTH receptor (ACTH-R) activation results in CORT release from the adrenal cortex. Hypothalamic GR activation reduces
CRF release via a negative feedback loop. CORT also regulates an extra-hypothalamic positive regulatory mechanism that increases
CRF activity. GR activation plays a role in EtOH-induced neuroadaptation, with a role for long-lasting changes in hypothalamic and

extra-hypothalamic structures.

CRF stores in the external zone of the median eminence
of Sprague—Dawley rats were decreased; tissue was taken
~12 h after withdrawal (Lee et al. 2000). Criado et al. (2011)
exposed Wistar rats to EtOH vapor for 14 h/day for either 2
or 8 weeks and then examined CRF immunoreactivity in the
amygdala, frontal cortex, hippocampus and parietal cortex
immediately, 24 h or 2 weeks after withdrawal from EtOH
vapors. No significant effects were found in the rats exposed
for 2 weeks. However, increased CRF immunoreactivity was
found in the hippocampus and parietal cortex of rats exposed
for 8 weeks, when examined 24 h or 2 weeks, but not imme-
diately, after withdrawal. These and other data not reviewed
here (Koob & Zorrilla 2010; Lack et al. 2005; Richardson et al.
2008a; Sommer et al. 2008; Uhart & Wand 2009) show that
effects of chronic EtOH exposure on CRF systems cannot
be defined without careful consideration of methodological
details. Furthermore, factors such as sex, species and age of
stress or EtOH exposure should be considered (Logrip et al.
2013; Przybycien-Szymanska et al. 2010, 2011; Silva et al.
2009; Van Waes et al. 2011).

At a behavioral level, EtOH consumption, abuse and
relapse have been observed to be critically modulated by
CRF and stress, and there is a high incidence of co-morbidity
between alcoholism and stress-associated disorders such
as anxiety and depression (Boden & Fergusson 2011;
Haass-Koffler et al. 2014; Lijffijt etal. 2014). Furthermore,
abnormally high levels of CORT, a condition known as
pseudo-Cushing’s syndrome (Kirkman & Nelson 1988), are
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frequently found in alcoholics. Laboratory animal research
has provided support for participation of the CRF system in
stress-induced changes in EtOH effects and in EtOH-induced
neuroadaptations that are reflected in behavioral changes
(Fig. 3). In the following sections, we review literature focus-
ing on the involvement of stress, and components of the CRF
system, in EtOH consumption and the behavioral aspects of
EtOH-induced neuroadaptation. Tables 1 and 2 list many of
the studies in these areas, with Table 1 providing references,
trait information and results for knockout (KO) and transgenic
mouse studies, and Table 2 providing detailed information
for pharmacological studies. We do not exhaustively review
the literature on the effects of EtOH on CRF-related peptide
levels; that is beyond the scope of this review. We refer to
specific literature, but the reader is referred to the tables
for details such as animal species, genotype and methods
associated with EtOH and other drug treatments.

The role of CRF systems in EtOH intake

A large number of studies have supported a role for CRF
and CRF-related systems in EtOH intake, which has led to
considerable interest in the potential of CRF-related pharma-
ceuticals as treatments for alcohol use disorders (Egli 2005;
Heilig & Koob 2007; Zorrilla et al. 2013). EtOH intake has been
examined using multiple procedures, including two-bottle
choice continuous access, operant self-administration to get

103



Phillips et al.

Table 1: Studies of EtOH drinking and neuroadaptation in KO and transgenic mice

Gene Reference Sex/background Trait Results
CRF Qlive et al. 129S2/SvPas x EtOH drinking; two-bottle choice, CRF KO mice consumed more
(2003) C57BL/6J 23 h/day for 16 days (2-10% EtOH than WT control mice
EtOH); or 2 h choice (10% in both 23 and 2 h access
EtOH) under 22 h/day fluid conditions. The conditioned
restriction for 3 days; rewarding effect of 2 g/kg
EtOH-induced conditioned EtOH was absent in KO
place preference for four EtOH mice, but present in WT.
conditioning trials (2 or 3 g/kg The genotypes showed
EtOH) equivalent conditioned
rewarding effects of 3 g/kg
EtOH
CRF Kaur et al. 129S2/SvPas x EtOH drinking; single-bottle DID 2 CRF KO mice had reduced
(2012) C57BL/6J; h/day for 3 days, then 4 h/day EtOH intake and BEC,
male and on day 4 (20% EtOH) compared with WT controls
female
CRF Pastor et al. 129Sv/J x EtOH-induced locomotor CRF KO mice did not develop
(2012) C57BL/6J sensitization; IP 2.5 g/kg EtOH EtOH-induced locomotor
once daily for 10 days, then IP sensitization, whereas WT
1.5 g/kg EtOH challenge and mice did; CRF KO mice had
locomotor test; BEC and CORT drastically reduced CORT
levels plasma levels, compared
with WT controls. BEC
levels did not differ
CRF overexpression Palmer et al. C57BL/6J x SJL EtOH drinking; two-bottle choice Transgenic mice consumed
transgenic (2004) continuous access for 16 days significantly less EtOH than
(3-20% EtOH) their non-transgenic
littermates. Older
transgenic mice drank less
EtOH than younger
transgenic mice
CRF4 Sillaber et al. 129/Svd x EtOH drinking; two-bottle choice There was no initial difference
(2002) 129/0Ola x continuous access (2-8% in EtOH consumption
CD1; male EtOH for 18 days; then 8% between KO and WT mice;
EtOH for up to 9 months); KO mice exposed to stress
exposure to swim and social at 2 and 3 months
defeat stress at 2 and 3 months consumed more EtOH than
WT mice at 4—9 months.
There was no stress effect
on WT mice
CRF; Nie et al. C57BL/6J x GABA neurotransmission; brain CRF (100 nm) or EtOH (44 mwm)
(2004) 129Sv slice electrophysiology did not enhance
GABA-mediated
neurotransmission in the
CeA in CRF; KO mice, but
did in WT mice
CRF; Chu et al. 129/0la x CD1 EtOH self-administration training CRF; KO mice did not display
(2007) then EtOH liquid diet for 14 EtOH WD-induced
days (2-4% EtOH); EtOH WD increases in EtOH
effects on operant EtOH self-administration, but WT
self-administration for 10 mice did
subsequent days
CRF, Pastor et al. 129SV/J x EtOH-induced locomotor CRF; KO mice did not show
(2008) C57BL/6J sensitization; IP 2.5 g/kg EtOH the EtOH-induced
once daily for 10 days, then IP locomotor sensitization
1.5 g/kg EtOH challenge and seen in WT mice, and had a
locomotor test; BEC and CORT blunted CORT response to
levels EtOH. BEC levels did not
differ
104 Genes, Brain and Behavior (2015) 14: 98135



Table 1: Continued

CREF, stress, ethanol consumption and neuroadaptation

Gene Reference Sex/background Trait Results
CRF; Pastor et al. 129SV/J x EtOH drinking; two-bottle choice EtOH intake (20% EtOH
(2011) C57BL/6J continuous access for 16 days concentration only) was lower
(3-20% EtOH); in a separate in CRF4 KO mice compared
study, two-bottle intermittent with WT during continuous
access for 47 days (3—-10% access; repeated swim stress,
EtOH, and 21 h/day); swim but not acute swim stress,
stress effects on EtOH drinking resulted in higher levels of 21
h/day EtOH consumption in WT
mice, but not CRF; KO mice
CRF, Molander et al. 129/Svd x 129/0Ola x  EtOH drinking; two-bottle choice There was no initial difference in
(2012) CD1; male continuous access for ~5 EtOH consumption between
months (2-8% EtOH); EtOH KO and WT mice; CRF; KO
vapor (four cycles of 16 h/day mice displayed greater social
exposure); swim and social defeat-induced, but not forced
defeat stress effects on EtOH swim stress-induced,
drinking increased EtOH intake, as well
as greater EtOH WD-induced
increases in EtOH intake,
compared with WT controls
CRF, Kaur et al. (2012) 129/0la x CD1; EtOH drinking; single-bottle DID 2~ CRF; KO mice had lower EtOH
male and female h/day for 3 days, then 4 h/day intake and BEC, compared with
on day 4 (20% EtOH) WT mice
CRF,4 Giardino and 129/0la x CD1 EtOH drinking; two-bottle DID 2 EtOH intake was lower in CRF;
Ryabinin backcrossed to h/day for 3 days, then 4 h/day KO mice, compared with WT
(2013) C57BL/6J on day 4 (15% EtOH); water mice; water intake and total
and food intake caloric intake were also lower
CRF,NestinCre  NMolander et al. 129S2/Sv x SJL x EtOH drinking; two-bottle choice There was no initial difference in
(2012) C57BL/6J continuous access for ~5 EtOH consumption between

CRF,

CRF,

CRF,

CRF,

Nie et al. (2004)

Sharpe et al.
(2005)

Giardino et al.
(2011)

Kaur et al. (2012)

C57BL/6J x 129

129X1/Svd x
C57BL/6J

129X1/Svd x
C57BL/6J

129X1/Svd x
C57BL/6J; male
and female

months (2-8% EtOH); EtOH
vapor (four cycles of 16 h/day
exposure); swim and social
defeat stress effects on EtOH
drinking

GABA neurotransmission; brain
slice electrophysiology

EtOH drinking; two-bottle choice
continuous access for 16 days
(3-=20% EtOH); in a separate
study, single-bottle DID
(0.6-10% EtOH; 30 min/day for
first 14 days and then 2 h/day
for 6 days at 10% EtOH)

EtOH-induced conditioned place
preference (IP 2 g/kg EtOH for
4 EtOH conditioning trials)

EtOH drinking; single-bottle DID 2
h/day for 3 days, then 4 h/day
on day 4 (20% EtOH)

CRF, NestinCre KO and WT mice.
Stress-induced increases in
EtOH consumption were lower
in CRF,NestinCre KO, compared
with controls, and CRF, NestinCre
KO mice did not display EtOH
WD-induced increases in EtOH
intake, whereas controls did

CRF (100 nm) and EtOH (44 mwm)
each enhanced GABA-media-
ted neurotransmission in the
CeA in both WT and CRF, KO
mice

EtOH consumption was slightly
reduced in CRF, mice,
compared with WT littermates,
at 7.5% and 10%
concentrations, during limited
access only

The conditioned rewarding effect
of EtOH was absent in CRF,
KO mice, compared with WT

CRF, KO mice had slightly
reduced EtOH intake on the
first day, compared with WT
mice; this difference was not
sustained on subsequent days
and not accompanied by
differences in BEC
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Table 1: Continued

Gene Reference Sex/background Trait Results
CRFy Pastor et al. C57BL/6J x 129SV/J EtOH-induced locomotor CRF4/, KO mice did not show the
(2008) sensitization; IP 2.5 g/kg EtOH EtOH-induced locomotor
once daily for 10 days, then IP sensitization seen in WT mice
1.5 g/kg EtOH challenge and and had a blunted CORT
locomotor test; BEC and CORT response to EtOH. BEC levels
levels did not differ
CRFy) Pastor et al. C57BL/6J x 129SV/J EtOH drinking; two-bottle choice Repeated swim stress, but not
(2011) for 47 days (3—-10% EtOH, 21 acute swim stress, resulted in
h/day); swim stress effects on higher levels of EtOH
EtOH drinking consumption in WT, but not in
CRF;, KO mice.
Uen, Pastor et al. C57BL/6J x 129SV/J EtOH-induced locomotor Ucny KO mice displayed normal
(2008) sensitization; IP 2.5 g/kg EtOH EtOH-induced locomotor
once daily for 10 days, then IP sensitization
1.5 g/kg EtOH challenge and
locomotor test
Uen, Giardino et al. 129X1/Svd x C57BL/6J EtOH drinking; two-bottle choice Ucny KO mice consumed less of
(2011) continuous access for 16 days a 6%, but not 3% or 10%,
(3-10% EtOH) solution, compared with WT
mice; KO mice showed
reduced preference for both
the 6% and 10% EtOH
concentrations, compared with
WT mice
Uen, Giardino et al. 129X1/Svd x C57BL/6J EtOH-induced conditioned place The conditioned rewarding effect
(2011) preference and aversion (IP 2 of EtOH was absent in Ucn,
g/kg EtOH for four EtOH KO mice, compared with WT,
conditioning trials) sensitivity to the conditioned
aversive effect of EtOH was
equivalent in the KO and WT
mice
Uen, Kaur et al. (2012) 129X1/Svd x C57BL/6J; EtOH drinking; single-bottle DID 2 Ucn; KO mice did not differ from

male and female

h/day for 3 days, then 4 h/day

WT mice in EtOH intake or BEC

on day 4 (20% EtOH)

BEC, blood ethanol concentration; WD, withdrawal.

at strength of reinforcement and reinstatement of EtOH
seeking (discussed in greater detail in the section on the role
of CRF systems in EtOH-induced neuroadaptation), and lim-
ited access ‘drinking in the dark’ (DID) procedures to obtain
binge-like levels of intake. Papers and findings are listed in
Tables 1 and 2, and several reviews have covered much of
the literature (see reviews cited above). We highlight some
of the findings here.

Single gene mutant mice

Only four papers had been published using single gene
manipulations in mice to examine the influence of
CRF-related genes on EtOH intake by the time of a 2006
general review of EtOH-related genes (Crabbe et al. 2006).
Since then, many additional papers have appeared (Table 1).
In the initial study examining EtOH intake in CRF KO mice,
KO mice consumed more EtOH than did wild-type (WT)
mice in both a 24-h continuous access procedure and a
limited access procedure (Olive et al. 2003). The opposite
phenotype was found in CRF overexpression mice that

106

were examined for their continuous access EtOH drinking
phenotype (Palmer etal. 2004). However, more recently,
Kaur et al. (2012) reported reduced EtOH intake in CRF KO
mice in a binge-like DID study. The opposite findings in CRF
KO mice could be related to the role of CRF in procedures in
which EtOH intake is generally lower (Olive et al. 2003) vs.
higher (Kaur et al. 2012).

Several studies have examined the role of CRF; using KO
mice, and results have not been entirely in agreement. The
first study examining EtOH intake in constitutive CRF; KO
mice found no initial effect, but reported a long-term increase
in continuous access EtOH consumption in CRF; KO mice
after repeated stress exposure that was not seen in their WT
controls (Sillaber et al. 2002). In that report, initial EtOH intake
levels were low (~1 g/kg/24 h) and stress-induced levels
remained relatively low (<4 g/kg/24 h). A more recent paper,
using the same KO mice, obtained data that are in agree-
ment with those findings (Molander et al. 2012). However,
other studies have found reduced EtOH intake in constitutive
CRF; KO mice, specifically when EtOH was offered at higher

Genes, Brain and Behavior (2015) 14: 98—135
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Table 2: Continued

122

Finding

Reference Model Treatment or trait

Drug

Receptor, drug type

IP Spironolactone (15 or 30 mg/kg) did not

EtOH-induced locomotor sensitization; IP 1.5

DBA/2J mice

Pastor et al.

Spironolactone

prevent acquisition of sensitization or

g/kg EtOH once daily for 10 days, then 1.5

(2012)

block the expression of sensitization

g/kg EtOH challenge and locomotor test; for

acquisition study, drug was given 30 min

prior to each 1.5 g/kg EtOH treatment except
on the final challenge day; for expression
study, drug was given 30 min prior to the

final 1.5 g/kg EtOH challenge only
EtOH drinking; two-bottle choice continuous

ICV mifepristone (0.1 then 250 pg) plus

Mifepristone Fahlke et al. Wistar rats

GR, antagonist plus

RU28318 (0.1 then 250 ug) did not affect

EtOH intake

access for 14 days (2-6% EtOH), then

(1996)

plus RU28318

mineralocorticoid

receptor,

two-bottle choice at 6% EtOH for ~3 weeks;
drugs given for 2 weeks (three times/week),

during which time EtOH drinking was

assessed

antagonist

BEC, blood ethanol concentration; DRN, dorsal raphe nucleus; EEG, electroencephalogram; IR intraperitoneal; MPZRE N, N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-
dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine; MRN, median raphe nucleus; MTIR 3-(4-chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine; SC,

subcutaneous; WD, withdrawal

concentrations (20%) or using a DID procedure, and thus,
when EtOH intake was generally higher in the WT littermate
mice (Giardino & Ryabinin 2013; Kaur etal. 2012; Pastor
et al. 2011). In addition, also inconsistent with Sillaber et al.
(2002), are studies in which forced swim or social defeat
stress-induced increases in EtOH intake have been found to
be absent or reduced in CRF; KO mice (Molander et al. 2012;
Pastor et al. 2011); furthermore, EtOH withdrawal-induced
increases in EtOH self-administration and intake were not
seen in CRF; KO mice (Chu etal. 2007; Molander et al.
2012). One difference in the studies that have found reduced
intake and a lack of stress response is that the KO mice were
backcrossed onto the EtOH-preferring C57BL/6J mouse
strain for several generations. In fact, Molander et al. (2012)
also found that stress-induced increases in EtOH consump-
tion were lower in a brain-specific CRF; KO that was on a
mixed 129S2/Sv x C57BL/6J x SJL strain background. In
general, the majority of the data suggest that adequate CRF,
function is important for higher levels of EtOH intake and for
stress-induced changes in EtOH intake.

Because receptor-specific antagonists for CRF, that can
be administered peripherally are not available, information
about the involvement of CRF, signaling in EtOH-related phe-
notypes has relied mostly on studies in CRF, KO mice. In
general, data have suggested a modulatory role on the more
significant involvement of CRF; in stress-related responses
(Coste et al. 2000, 2006). The initial study in CRF, KO mice
examined both continuous and limited access EtOH drinking.
No effect of the mutation was found in the continuous access
study. The limited access study included 30-min access peri-
ods as the EtOH concentration was increased, followed by
2-h access periods. A modest difference in intake (KO > WT)
was found for some concentrations during the 30-min access
phase that was not sustained when the access period was
increased (Sharpe et al. 2005). In a more recent study, a small
transient reduction in EtOH intake was seen in CRF, KO mice
that appeared to be largely in males (Kaur et al. 2012). There-
fore, this receptor subtype has not had a sustained effect on
EtOH consumption in the studies that have been conducted
thus far.

Pharmacological studies

Intracerebroventricular administration of CRF has been found
to decrease EtOH consumption in rats and mice (Bell et al.
1998; Ryabinin et al. 2008; Thorsell et al. 2005), which is
consistent with reduced EtOH intake in CRF overexpression
mice (Palmer etal. 2004). However, some data suggest
non-specific effects on fluid intake (Ryabinin et al. 2008).
Centrally administered CRF has also been found to reinstate
EtOH seeking behavior (Le et al. 2002), which is consistent
with its role as a stressor. Results for the effect of the
other endogenous CRF,,, agonist peptide, Ucn;, on EtOH
intake have been dependent upon brain region, as intra-DR
application had no effect, but intra-lateral septum infusion
reduced both established EtOH intake and the acquisition of
EtOH drinking (Ryabinin et al. 2008). Overall, the majority of
the data appear to indicate that drugs that have combined
agonist actions at CRF; and CRF, receptors reduce EtOH
intake (see CRF and Ucn, entries in Table 2).
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On the other hand, there is a large body of data show-
ing that reduced CRF, signaling via receptor antagonist
administration also reduces EtOH intake. As this litera-
ture has evolved, it has become more apparent that CRF,
antagonists have greater effects when EtOH intake levels
are high. For example, subcutaneous administration of the
CRF; antagonist, N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-

methylphenyl)-2,5-dimethyl-pyrazolo [1,5-alpyrimidin-7-amine,

attenuated elevated levels of EtOH intake seen in alcohol
preferring (P) rats after dependence induction, while not
affecting EtOH intake in non-dependent P rats (Gilpin
et al. 2008). Similarly, operant responding for EtOH was
decreased by several different CRF, (or CRF, ) antagonists
in EtOH-dependent, but not in non-dependent, animals (Finn
et al. 2007; Funk et al. 2006; Overstreet et al. 2007; Sabino
et al. 2006), and these drugs tend to reduce binge-like or
stress-induced heightened EtOH intake, with less consistent
effects on more modest levels of intake (Cippitelli et al.
2012; Lowery et al. 2008; Lowery-Gionta et al. 2012; Simms
et al. 2014). However, not all studies have consistently sup-
ported this generalization. For example, a significant restraint
stress-induced increase in EtOH consumption in 129SVEV
mice was not blocked by the CRF; antagonist, R121919
(Yang et al. 2008), and CP-154,526 reduced intake under
both higher and lower intake conditions in mice and rats
(Hwa et al. 2013). Also, lesioning the CeA, which would be
expected to affect neurons that are relevant to CRF-related
pathways, did not prevent heightened levels of EtOH intake
seen in C57BL/6J mice after dependence induction (Dhaher
et al. 2008). Finally, Sharpe and Phillips (2009) showed that
the selective CRF, agonist, Ucng, delivered centrally to
non-dependent C57BL/6J mice, reduced 2-h limited access
10% EtOH consumption. This study used lickometers to
investigate drinking patterns, and identified that reduced
EtOH drinking by Ucng was associated with a change in size
of the largest drinking bouts. Lowery et al. (2010) also found
that ICV infusions of Ucng reduced binge-like EtOH drinking
in C57BL/6J mice.

In conclusion, growing evidence from studies using both
single gene mutant mice and pharmacology indicates that
voluntary EtOH intake can be mediated by CRF signaling via
CRF;. CRF, appears to play a key role in acquisition of EtOH
drinking when high levels of intake are achieved via binge-like
drinking, genetic predisposition, exposure to high concentra-
tions of EtOH or a combination of these conditions. Current
literature also suggests that the enhancing effects of stress
on EtOH drinking are mediated by CRF;, although results may
be influenced by species, genotype and methodological fac-
tors. A significant literature supports the view that increased
EtOH drinking seen after long-term, dependency inducing
periods of exposure to EtOH and EtOH-induced negative
emotionality and anxiety associated with post-dependent
states are mediated, at least in part, by CRF,. CRF, appear
to play a more minor role.

Effects of EtOH drinking on CRF and related
molecules

We have focused on the ability to manipulate EtOH drink-
ing and EtOH-induced neuroplasticity by genetically or

Genes, Brain and Behavior (2015) 14: 98-135
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pharmacologically altering relevant components of the CRF
system. However, a few comments about the changes in this
system induced by EtOH drinking are pertinent. A relatively
early study examined the effect of different levels of voluntary
EtOH drinking on brain CRF levels. Wistar rats were classi-
fied as low, moderate and high intake and then examined for
CRF concentration in several brain regions. Rats classified as
high drinkers had higher non-median eminence hypothalamic
CRF concentrations, but lower neurointermediate pituitary
and pons-medulla CRF concentrations (George et al. 1990). It
should be noted that the different drinking levels in these Wis-
tar rats could have had genetic, environmental or both types
of influences as their source. In a more recent study, the
number of CRF-positive cells in the CeA was higher in adult
mice immediately after a binge-like EtOH drinking episode
(Lowery-Gionta et al. 2012). This relationship appears to be
altered when EtOH exposure occurs at an earlier, more dis-
tant time point, as CRF cell counts in the CeA were reduced,
rather than increased, in adult rats that had a history of
adolescent binge drinking (Gilpin et al. 2012), and so was
CRF mRNA in the BLA (Falco et al. 2009). However, adoles-
cent rats may have a higher basal level of CRF in some brain
regions, including the CeA, compared with adult rats, which
could affect the response of this system (Wills et al. 2010).
Some studies have examined the effect of pre-existing
genetically-determined differences in EtOH preference.
When the effect of voluntary EtOH drinking on CRF mRNA
levels was examined in selectively bred Sardinian alcohol
preferring (sP) rats, CRF mRNA levels were decreased in
the CeA, but not in hypothalamus (Zhou et al. 2013). Fur
thermore, data for individual animals showed a significant
negative correlation between intake and CRF mRNA level in
the amygdala. Of course, it is impossible to compare this out-
come to that in the oppositely selectively bred non-preferring
line, because they will not voluntarily consume much EtOH.
However, innate differences in pairs of selected lines can
be examined. For example, when lines of rats bred for high
and low EtOH drinking were compared in the EtOH-naive
state, CRF-positive cells and CRF mRNA were significantly
lower in the CeA of alcohol preferring (P), compared with
alcohol non-preferring (NP) rats, but not in the high alcohol
drinking (HAD), compared with low alcohol drinking (LAD)
rats (Hwang et al. 2004). Thus, the data are inconsistent with
regard to levels of these CRF-related peptides as predictors
of genetically determined tendency to consume EtOH. In
addition, several lines of rats have been compared for native
differences in Ucn,-positive cells in the EWcp, with mixed
findings; a greater number of Ucn, cells was found in the pre-
ferring line in two of the five surveyed pairs; a lower number
in one preferring compared with non-preferring; and no dif-
ference was found in two of the five pairs (Turek et al. 2005).
On the other hand, data from these rat lines were more
consistent in showing a greater number of Ucn,-positive
projections to the lateral septum in association with EtOH
preference (Turek et al. 2005). Furthermore, using immuno-
histochemistry, three sublines of alcohol-preferring rats were
compared with control Wistar rats for Ucn;-positive cells in
the EWcep. The number of Ucn,-positive cells was greater in
male P compared with Wistar rats; a similar non-significant
trend was found in female animals (Fonareva et al. 2009).
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Therefore, there are again contradictory findings, with regard
to whether number of Ucn;,-positive cells serves as a marker
for differences in genetically determined EtOH preference.
Some of this variability in results could be related to the
heterogeneous nature of the underlying genetic factors for
EtOH drinking.

Other genetic findings

A few studies have provided evidence of associations of
genetic polymorphisms in CRF-related genes with EtOH
drinking phenotypes. The rhesus macaque CRH gene has
been sequenced and examined for functional variants. One
variant (-2232C—G) was shown to decrease DNA-protein
interactions and decrease sensitivity of the CRH promoter
to glucocorticoids in an in vitro assay. This variant was also
associated with reduced CRF in the cerebral spinal fluid,
and increased plasma ACTH, under non-stress conditions. It
was also associated with increased EtOH consumption in
adult macaques. The authors state that the genetic effect
was specifically in macaques that were mother-reared in
social groups, as opposed to macaques that were first isolate
reared by human caregivers and then placed with peers from
37 days forward; however, intake data were not presented
for the latter group (Barr et al. 2008). A single nucleotide
polymorphism (SNP) within the rhesus macaque CRH pro-
moter (—248C—T) was found to increase DNA-protein inter
actions and to increase EtOH consumption in animals that
were isolate-peer reared, but not mother-reared. These mon-
keys also exhibited a larger stress-axis response to social
separation stress (Barr et al. 2009). The authors suggested
that effects of mutations may be specific to environmental
conditions. Thus, for example, some may have effects under
social drinking situations and others may affect stress-related
drinking.

The electroencephalographic response to CRF was exam-
ined in P .and NP rats as a marker of CRF-induced neural acti-
vation. P rats exhibited a larger response, compared with NP
rats, and a lower basal concentration of CRF was found in P
rats in several brain regions. These results led to the specula-
tion that CRF receptors may be upregulated in P rats and that
these differences in CRF neural regulation may contribute to
differences in EtOH consumption (Ehlers et al. 1992). Subse-
quently, the finding of lower CRF in P rats was confirmed,
but it was not replicated in another set of HAD and LAD
lines (Hwang et al. 2004). Also, basal CRF levels in the CeA
of sP rats were higher than in Sardinian non-preferring (sNP)
rats (Richter et al. 2000; Zhou et al. 2013), a region where
it had been found to be lower in P rats (Ehlers et al. 1992;
Hwang et al. 2004). Furthermore, no difference was found
between the high EtOH drinking C57BL/6J and EtOH avoid-
ing DBA/2J mouse strains (Hayes et al. 2005). Therefore, a
clear relationship between CRF level and genetically deter
mined level of EtOH intake is not apparent. However, dif-
ferences in innate anxiety level found between the P and
NP (P > NP) rats, but not between HAD and LAD rats, may
reflect variation in the specific genes involved in the selec-
tion traits across EtOH consumption selected lines and also
support significant involvement of CRF specifically in anxiety-
or stress-related drinking. Based on human SNP association
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analysis, Enoch et al. (2008) suggested that the CRF-BP gene
(CRHBP) plays a role in stress-related EtOH use. However, a
negative, rather than positive, correlation was found between
level of anxiety-like behavior and CRF level in sP and sNP rats.
Chen et al. (2010) suggested a role for CRHR1 genetic varia-
tion in vulnerability to alcohol use disorder, and Treutlein et al.
(2006) suggested an association of CRHRT polymorphisms
with pattern of alcohol consumption. Additional genetic inves-
tigations will be needed to substantiate these relationships
and identify gene networks that are likely to influence com-
plex alcohol-related traits and possibly be population-specific.

A SNP in the promoter region of the CRF, gene (Crhr1)
of the Marchigian—Sardinian preferring (mSP) rat may influ-
ence their heightened stress-induced EtOH drinking pheno-
type. This polymorphism results in upregulation of Crhr1 in
several brain regions, compared with levels seen in control
Wistar rats. When these rats were treated with a CRF, antag-
onist, stress-induced reinstatement of EtOH drinking was
blocked in mSP, but not in Wistar, rats (Hansson et al. 2006).
Furthermore, chronic free-choice EtOH drinking was associ-
ated with downregulation of the CRF; protein in the amyg-
dala and NAcc (Hansson et al. 2007). The authors suggested
that heightened levels of CRF, drive excessive EtOH intake,
which consequently reduces CRF; activity.

Because the gene coding for CRF, (Crhr2) maps to a
genetic region associated with EtOH consumption, specif-
ically in the inbred P and NP rats, Crhr2 expression and
sequence were examined and a receptor function assay was
performed. Lower levels of Crhr2 expression were found in P
rats in some brain regions. In addition, a 7 base pair insertion
polymorphism in the promoter region of the gene was found
in the P rat, as well as a coding region polymorphism and
an amino acid deletion in the 3’ untranslated region. The
effect of the promoter insertion in vitro was to lower Crhr2
expression, and CRF, density in the amygdala was lower in P
compared with NP rats (Yong et al. 2014). Whether these dif-
ferences directly relate to differences in EtOH consumption
between P and NP rats will require further investigation.

The role of CRF systems in EtOH-induced
neuroadaptation

Dependence, withdrawal and relapse

One potential consequence of repeated EtOH administra-
tion is the development of dependence. Dependence can
be inferred from certain symptoms that may be seen when
chronic EtOH is withdrawn. Affective symptoms associated
with EtOH withdrawal include increased anxiety, dysphoria
and depressed mood, symptoms that have been posited to
involve changes in the stress axis and central CRF-mediated
process (Breese et al. 2005a; Ciccocioppo et al. 2009; Clapp
et al. 2008; Griffin 2014; Koob 2010; Koob et al. 2014; Lowery
& Thiele 2010; Shalev et al. 2010; Zorrilla et al. 2013). In addi-
tion, repeated bouts of EtOH exposure and withdrawal have
been associated with escalation of EtOH intake (see descrip-
tion and history of this model in Vendruscolo & Roberts 2014)
and a number of studies have explored the involvement of
CRF systems in this effect, and in reinstatement of EtOH
drinking and seeking, as traits relevant to relapse.
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Single gene mutant mice studies

Few studies have utilized mutant mice to investigate the role
of the CRF system in EtOH withdrawal-related effects. When
CRF; KO and WT mice were made dependent on EtOH using
a liquid diet, the KO mice did not exhibit withdrawal-induced
increased EtOH seeking, whereas WT mice did; KO and WT
mice were similar in EtOH seeking in the non-dependent
state (Chu et al. 2007). The same paper reported that the
CRF, antagonist, antalarmin, blocked withdrawal-induced
increases in EtOH seeking in C57BL/6J background strain
mice made dependent using EtOH vapor inhalation. These
data support CRF; involvement in dependence-induced
increases in EtOH seeking. We were not able to find
additional studies examining effects in CRF-related KO mice.

Pharmacological studies

A number of studies have investigated the role of CRF
and its related peptides in withdrawal-induced increases in
EtOH drinking or self-administration using pharmacological
manipulations. Data collected in C57BL/6J mice, in which a
CRF,,, antagonist was microinjected into the CeA, showed
a decrease in EtOH withdrawal-associated EtOH intake in
the absence of an effect on non-dependent mice (Finn et al.
2007). A larger number of studies have examined the spe-
cific involvement of CRF, and there is general agreement that
CRF, antagonists attenuate withdrawal-associated increases
in EtOH drinking/self-administration (Chu et al. 2007; Funk
etal. 2007, Gehlert etal. 2007, Overstreet etal. 2007,
Roberto et al. 2010; Sabino et al. 2006). In most cases, the
CRF; antagonist effects did not generalize to non-dependent
animals; however, in one study that examined EtOH intake
during operant sessions, rather than number of reinforcers,
attenuating effects of R121919 were seen in both dependent
and non-dependent rats (Roberto et al. 2010). It is worth men-
tioning, however, that in this study, repeated R121919 treat-
ment was given 24 h before each operant testing session.

A few studies have examined the role of CRF,. One
study examined EtOH withdrawal-associated increased
self-administration after intra-CeA infusion of Ucn; and
attenuation was found (Funk & Koob 2007); however, EtOH
self-administration in the non-dependent rats in this study
was increased by intra-CeA Ucn; infusion. Others have
found decreased EtOH intake with ICV infusion of Ucns in
C57BL/6J mice using DID procedures in which higher levels
of EtOH intake are induced (Lowery et al. 2010; Sharpe &
Phillips 2009). Therefore, while studies on KO mice do not
appear to support a role for CRF,, these pharmacological
studies suggest that both CRF; and CRF, may influence
higher levels of EtOH intake.

In mice made dependent using EtOH liquid diet, the
non-selective CRF receptor antagonist a-helical CRFg_44),
given ICV, blocked the anxiogenic-like effects of EtOH
withdrawal on the elevated plus maze, but did not alter
other withdrawal symptoms, including tail stiffness, tremor
or ventromedial distal flexion (Baldwin etal. 1991). The
attenuating effect of CRF receptor antagonism on the
anxiogenic-like response has been replicated (Valdez et al.
2003). Further, when CRF was microinjected into several
brain regions, but not others (see Table 2), dose-dependent
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sensitization of an EtOH withdrawal-induced decrease in
social interaction was seen (Huang et al. 2010), which has
been posited to be an anxiety-like behavior (File 1980).
Examination of the brain regions that supported these
effects suggests that the extended amygdala is involved in
withdrawal-associated anxiogenic behaviors. Several addi-
tional studies have used the social interaction test, as a
behavioral index of anxiety-related behavior and have found
that CRF, receptor-selective antagonists given during EtOH
withdrawal can blunt anxiety-like behavior (Breese et al.
2004, 2005b; Knapp etal. 2004; Overstreet etal. 2007,
Sommer et al. 2008; Wills et al. 2009). Furthermore, the
CRF;-selective antagonist, SSR125543, blocked CRF- and
stressor-sensitized withdrawal-induced anxiety-like behavior
(Breese et al. 2005b; Huang et al. 2010; Knapp et al. 2011a).
However, the endogenous CRF,-selective agonist, Ucns,
given ICV or into several brain regions, did not affect EtOH
withdrawal-associated anxiogenic effects (Huang et al. 2010),
nor did the CRF, antagonist antisauvagine-30 (Overstreet
et al. 2004). Taken together, these results suggest that CRF,
plays a role in withdrawal-induced anxiogenic behaviors.

The role of CRF signaling has also been extensively stud-
ied in the context of behaviors thought to model relapse;
in particular, reinstatement of EtOH seeking/drinking behav-
jor in rodents. Corticotropin-releasing factor signaling involve-
ment in escalation of use after periods of deprivation has
also been examined. Most commonly, reinstatement stud-
ies have used operant methods in which animals are trained
to perform an operant response to gain access to a reservoir
or sipper containing EtOH, and then, once stable respond-
ing is achieved, extinction procedures are used that lead
to low levels of the behavior that previously resulted in
EtOH access. Post-extinction, active drug taking or seeking
behavior (responding in the absence of drug delivery) can
be re-established by drug priming, presentation of cues that
were previously associated with drug availability or appli-
cation of a stressor. In the case of EtOH, CRF signaling
appears to play an important role in those mechanisms that
particularly mediate stress-induced reinstatement, but not
in those that facilitate drug prime or cue/context-induced
reinstatement. For example, CRF; antagonists selectively
reduce footshock-induced reinstatement of responding for
EtOH (Le etal. 2000; Liu & Weiss 2002), an effect that
appears to be especially prominent in EtOH-dependent or
genetically selected EtOH preferring rats and is mediated
by extra-hypothalamic mechanisms (Gehlert et al. 2007; Le
et al. 2000; Liu & Weiss 2002). In addition, CRF signaling
via CRF; modulates pharmacologically-induced stress effects
on EtOH reinstatement; thus, stress-axis activation induced
by yohimbine, an «2 adrenoreceptor antagonist that acti-
vates the ascending noradrenaline system and increases
anxiety-like responses, reinstates responding for EtOH. This
reinstatement is prevented by CRF and CRF; antagonism
(Le et al. 2000, 2002; Marinelli et al. 2007), which appears to
be mediated by CRF receptors in the median raphe nucleus
(Le et al. 2013). On the other hand, the NAcc appears to be
an important brain structure involved in the role of CRF in
stress-induced escalation of EtOH intake during periods of
deprivation. For example, when EtOH-preferring P rats that
have a history of EtOH drinking are re-introduced to EtOH,
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intake can be increased as a consequence of exposure to
restraint stress administered during a period of EtOH depri-
vation; this effect was prevented by intra-NAcc injection of a
CRF; antagonist (Knapp et al. 2011a). Furthermore, increased
EtOH intake can be induced by intra-NAcc administration of
CRF during the deprivation period (Knapp et al. 2011a). For a
review of additional research examining stress-induced rein-
statement of drug seeking and the role of CRF (among other
neuropeptides), see Shalev et al. (2010).

Psychomotor sensitization

The body of data examining the role of CRF-related systems
in behavioral sensitization to EtOH is small. However, data
from both single gene KO mice and pharmacology have con-
sistently indicated that CRF and CRF;, but not CRF, and
Ucn;, play important roles in the neuroadaptations that under
lie the development and expression of psychomotor sensi-
tization to EtOH (Fee et al. 2007; Pastor et al. 2008, 2012;
Phillips et al. 1997). Repeated restraint stress was previ-
ously shown to produce psychomotor sensitization to EtOH
through a mechanism that involves CORT and GR (Roberts
et al. 1995). More recent results from our laboratory and
other research groups have shown a key role of CRF and
CRF; in EtOH-induced psychomotor sensitization, even in
the absence of an externally applied stressor (Fee et al.
2007; Pastor et al. 2008, 2012). Absent EtOH sensitization
in CRF, mice was also associated with a blunted endocrine
response (Pastor et al. 2008), suggesting an involvement of
the HPA axis. Repeated injections of CORT sensitizes the
locomotor-stimulant response to EtOH; however, the doses
of systemic CORT necessary to induce sensitization resulted
in plasma CORT levels notably higher than those produced
by a sensitizing EtOH treatment (Pastor et al. 2012). Partic-
ipation of hypothalamic CRF and CORT, therefore, appears
to be necessary, but not sufficient, to explain the role of
CRF/CRF, in the acquisition of sensitization to EtOH. In addi-
tion, the CORT synthesis inhibitor metyrapone prevents the
development, but not the expression, of EtOH sensitization
(Roberts et al. 1995). Furthermore, our data are in agree-
ment with previous findings showing that, although EtOH- or
stress-induced changes in CORT can be necessary to medi-
ate acquisition of EtOH sensitization, no direct temporal cor
relation between plasma CORT levels and behavior has been
seen (Pastor et al. 2012; Roberts et al. 1995). In summary, a
CRF-dependent mechanism, via CRF,, involving the HPA axis
has been proposed for acquisition of sensitization, whereas
an extra-hypothalamic CRF/CRF; mechanism has been sug-
gested for expression of EtOH sensitization (Pastor et al.
2008, 2012).

Concluding remarks and future perspectives:
from preclinical to clinical

The preclinical investigation of CRF receptors and ligands in
stress vulnerability, EtOH dependence and relapse is among

the most active research areas focused on the pharmacology
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and genetics of EtOH-induced behavior. This review has
summarized evidence for CRF-related biological determi-
nants that mediate stress- and EtOH-induced behavioral
changes. Robust scientific evidence suggests that CRF
and CRF, play seminal roles in stress-induced changes in
EtOH consumption, binge-like EtOH intake, post-dependent
heightened drinking, genetic predisposition, negative emo-
tionality and anxiety and stress- and EtOH-induced behavioral
sensitization. The field would benefit from additional research
aimed at identifying the specific molecular determinants of
EtOH-induced CRF, activation and CRF,-mediated neuro-
plasticity that contributes to changes in EtOH responses.
In an elegant study combining pharmacological and KO
approaches, Bajo et al. (2008) showed that EtOH induces the
release of GABA in the CeA via a mechanism that depends
on a CRF;-initiated mechanism, which requires participation
of protein kinase C (PKC) epsilon. Mutant mice lacking PKC
epsilon showed a stress- and EtOH-induced phenotypic
profile comparable to that found in CRF; KO mice (Table 1),
characterized by reduced anxiety-like behavior and EtOH
consumption (Hodge et al. 1999, 2002; Olive et al. 2000).
Additional research exploring whether this mechanism is
also involved in CRF,-induced effects in other brain regions
would further define the relevant brain circuitry. As recently
reviewed by Haass-Koffler and Bartlett (2012), CRF plays an
important role in facilitating acquisition and maintenance of
plasticity in the VTA and amygdala, particularly via enhanced
glutamatergic activation and decreased GABA-mediated
inhibition. Further research exploring the mechanisms sup-
porting CRF,-mediated plasticity would also be extremely
relevant in this field.

Given its clinical relevance and the notion that
CRF-mediated neuroplasticity in the mesocorticolimbic
neuronal network may contribute to stress vulnerability, loss
of control over EtOH consumption and relapse, an increased
and particular focus should be placed on exploring strategies
to block experiencing the effects of such neuroadaptations.
This is sometimes referred to as the expression of the
neuroadaptive effect. Blocking or reducing the expression of
such neuroplastic changes could include not only pharma-
cological strategies, but also behavioral strategies. Solinas
etal. (2008) reported that environmental enrichment can
reduce some of the neurochemical and behavioral effects of
repeated administrations of cocaine, and others have indi-
cated that this type of manipulation can reduce stress levels
per se and also reduce elevated stress hormones associated
with morphine or amphetamine administration (Ravenelle
etal. 2013; Xu et al. 2014). Investigating whether environ-
mental enrichment, such as increased physical exercise
(Segat et al. 2014), might alter behavioral and neurochem-
ical indicators of CRF-mediated neuroplasticity associated
with a history of EtOH administration may be a valuable
future line of research. Clearly, preventing all exposure to
EtOH is almost impossible, so focusing on the acquisition of
neuroadaptations may be less fruitful from the perspective
of treatment; however, it should be mentioned that recent
findings for cocaine suggest that loss of environmental
enrichment could increase vulnerability to drug use (Nader
et al. 2012), and thus increase the probability of drug-induced
neuroplasticity.
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In view of some recent findings (reviewed by Zorrilla et al.
2014), additional preclinical research is needed on genetic
factors that contribute to differential effectiveness of CRF,
antagonists (Heilig et al. 2010; Sinha 2008). Further, additional
explorations are needed to substantiate data suggesting that
gene polymorphisms may play a role in risk for EtOH use.
For example, Crh and Crhr1 polymorphisms have been asso-
ciated with increased active responses to stress in animals
selectively bred for high preference for EtOH (Ayanwuyi et al.
2013; Cippitelli et al. 2014) and with increased EtOH con-
sumption in monkeys exposed to early life stress (Barr et al.
2009). Polymorphisms in human CRH; and CRHBP have also
been associated with different aspects of alcohol use and
dependence (Chen et al. 2010; Enoch et al. 2008; Treutlein
et al. 2006).

Finally, based on promising results for CRF; antagonist
effects on EtOH consumption in animal models, there has
been considerable interest in the potential for these drugs
as pharmacotherapeutics for alcohol use disorders. Zorrilla
et al. (2013) suggest that such drugs have promise, in part,
because their anxiolytic-like actions do not appear to be
susceptible to tolerance (Zorrilla & Koob 2004), they do
not appear to have sedative effects or adverse effects on
motor coordination nor adversely affect attention or learn-
ing (Hogan et al. 2005; Zorrilla & Koob 2004; Zorrilla et al.
2002), and they may have little addiction liability (Broad-
bear etal. 2002; Sahuque etal. 2006; Stinus et al. 2005).
Clinical trials began about 10 years ago (December 2004)
with several CRF; antagonists. Traits being examined have
included major depression, irritable bowel syndrome, social
anxiety disorder and post-traumatic stress disorder. None
appear to have completed a Phase Il trial. Development of
one antagonist was discontinued due to instances of ele-
vated liver enzymes, others because of lack of efficacy in
double-blind, placebo-controlled trials for major depression
(Koob & Zorrilla 2012; Zorrilla & Koob 2010). Koob and Zorrilla
(2012) have provided the revisionist view that CRF, antag-
onists may be most efficacious for psychiatric disorders in
which stress is a more dynamic than chronic factor, includ-
ing addiction. Perhaps, an alternative to consider is a drug(s)
that has indirect effects on the CRF system. For example, in
one study, the reduction in EtOH intake by the opioid recep-
tor antagonist, naltrexone, was associated with blockade of
CRF expression in the PVN induced by EtOH drinking (Oliva
& Manzanares 2007). In another study, the effect of com-
bined naltrexone and the CRF, antagonist, CP154526, was
examined on intermittent access EtOH drinking in C57BL/6J
mice, when infused into the DR. Each drug was effective, at
least transiently, when given alone, but an increased effect
was not seen when the drugs were given together (Hwa
et al. 2014). However, this study used an intermittent access
EtOH protocol that did not specifically include evaluation of
the contribution of cue/context effects, which could be impor
tant. Previous data indicate that opioid antagonists not only
reduce EtOH intake (Méndez & Morales-Mulia 2008), but also
reduce cue-dependent reinstatement of EtOH seeking (Liu
& Weiss 2002). Context-dependent EtOH reinstatement has
also been seen to be mediated by opioid receptors, in par
ticular, BLA opioid receptors (Burattini et al. 2006; Marinelli
et al. 2010). These pre-clinical data are particularly relevant, as
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human data indicate that opioid antagonism increases dura-
tion of abstinence periods (Maisel et al. 2013; O'Malley et al.
2007), which might be an indicator of opioid-mediated atten-
uation of the relapse-triggering strength of context and other
conditioned stimuli. A combined strategy that reduces vulner
ability to both stress-induced and conditioned stimuli-induced
relapse could be important to consider. Collectively, we agree
with many other investigators that the CRF system plays a
remarkably important role in the etiology and maintenance
of addiction, and particularly in the effects of excessive use.
The need for continued research directed at identifying ways
to reverse or inhibit the effect of changes in this system
on active and relapsing use is supported by the existing
findings.
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