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Ketamine: repurposing and redefining
a multifaceted drug

David E. Potter and Mahua Choudhury, mchoudhury@pharmacy.tamhsc.edu

This short review will highlight recent clinical and basic research that supports the therapeutic utility of

ketamine as a rapid-acting, life-saving antidepressant and a versatile analgesic. After 50 years of use as a

dissociative anesthetic and misuse as a street drug, ketamine has re-emerged as a useful off-label agent for

ameliorating various types of pain and resistant depression. In addition to its ability to inhibit N-methyl-

D-aspartate (NMDA) receptors, the diverse actions of ketamine might involve epigenetic mechanisms

such as microRNA regulation. Thus, ketamine is transitioning from being the pharmacologist’s

nightmare to one of the most interesting developments in the pharmacology of depression and pain.
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Introduction

With the reorganization of the biopharmaceu-

tical research enterprise (academia, industry,

government), repurposing of existing drugs has

become a desirable mechanism for getting

drugs into and out of the therapeutic pipeline

expeditiously at a lower overall cost [1]. Keta-

mine is a prime example of repurposing a

multifaceted drug because it has potential for

multiple, dose-dependent uses for some chal-

lenging clinical situations that involve the need

for ‘safe’, parenteral anesthesia as well as relief of

pain [2] and depression [3]. The purpose of this

short review is to highlight some of the phar-

macological advances that suggest ketamine has

utility as a: (i) therapeutic agent in treating

refractory pain and depression and (ii) phar-

macological tool for discovering novel mecha-

nisms that will lead to more-efficacious therapies

for diseases involving pain and depression.

Approximately 50 years ago, D.E. Potter

worked with ketamine in discovery research at

Parke-Davis, Ann Arbor, MI, USA. At the time,
1848 www.drugdiscoverytoday.com 
CI581 (ketamine) was identified as ‘IT’ in a report

to Duncan A. McCarthy, Jr; ‘IT’ was the best

candidate of all those phencyclidine derivatives

that were tested as potential parenteral anes-

thetics in infrahuman primates and other species

[4]. In the mid-1960s, ketamine was evaluated as

an intravenous anesthetic agent in humans [5]; it

was approved for clinical use in 1970. Subse-

quently, ketamine began its clinical life as a

‘dissociative anesthetic’ [6].

The parenterally administered drug was la-

beled clinically as a dissociative anesthetic be-

cause it induces a cataleptic state in which the

eyes remain open and sensory input (percep-

tion) is suppressed at association areas (tha-

lamic–limbic) below the level of the sensory

cortex. Moreover, tone of the pharyngeal and

laryngeal muscles is maintained, which lessens

the possibility of aspiration should vomiting

occur. Based on these properties, ketamine

continues to be suitable as a parenterally ad-

ministered anesthetic or sedative agent for un-

cooperative and/or compromised patients
1359-6446/06/$ - see front matter. Published by
including: (i) children (e.g. burn injuries, frac-

tures); (ii) battlefield emergencies (e.g. difficult

airways, reactive airway disease) and (iii) veter-

inary subjects. Based on its utility in adults and

children, under special circumstances, the World

Health Organization has listed ketamine as a

core medicine (a minimum medical need for a

basic health system) [7]. For example, ketamine

was designated the ‘preferred agent’ in a rela-

tively common emergency room procedure,

such as fracture reduction that requires con-

scious sedation of pediatric patients [8].

However, in addition to its ability to produce a

combination of analgesia, amnesia, immobility

and loss of consciousness at anesthetic doses,

ketamine can produce significant dose- and

duration-related adverse side-effects including

psychotomimetic ideation, increases in blood

and intracranial pressure (relative contraindi-

cations), and excessive secretions in the airway.

However, appropriate premedications can

attenuate the adverse psychotomimetic effects

(e.g. lorezepam) and excessive secretions
 Elsevier B.V. http://dx.doi.org/10.1016/j.drudis.2014.08.017
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(e.g. glycopyrrolate) elicited by anesthetic doses

of ketamine. The illicit use of ‘street’ ketamine

over prolonged periods (weeks, months, years)

can cause urinary tract (cystitis) symptoms [9]. In

neonatal rats, repeated administration of keta-

mine can induce neural apoptosis, but co-ad-

ministration of dexmedetomidine can provide

neuroprotection [10]; thus, the combination

might be preferable in pediatric patients.

More recently, at doses below those produc-

ing anesthesia, ketamine has re-emerged as an

off-label rapid-acting antidepressant with the

potential for treating severe depression that is

resistant to other therapies [7] and an analgesic

that can be administered by multiple routes

(including topical), alone or in combination with

other drugs [11,12]. Clinical studies suggest that

ketamine is ‘arguably one of the most exciting

developments in antidepressant pharmacology

in more than 50 years’ [13]. The desired action

represents an efficacious approach to amelio-

ration of: major depressive disorder, treatment-

resistant depression, bipolar affective disorder

and suicidal ideation. Moreover, clinical obser-

vations indicate that ketamine can be used

alone and in combination with other drugs
I
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Pharmacologist’s nightmare. Multifaceted activities of

reminiscent of the ‘blind men and the elephant’. (Ado
(e.g. amitriptyline) by topical administration and

other routes for relief from acute and chronic

pain [12,14]. In both cases, ketamine is admin-

istered at subanesthetic doses to achieve these

‘new’ applications.

This brief review will focus on two important

pharmacological actions of ketamine, those of a:

(i) multipurpose analgesic and (ii) novel, rapid-

acting antidepressant. It is noteworthy that the

role of ketamine as a potential modulator of

epigenetics, via histone deacetylase and micro-

RNAs (miRNAs), might explain some of the

sustained clinical effects of ketamine.

Pharmacology of ketamine

Medicinal chemistry

Commercially available ketamine is an analog of

phencyclidine and is a chiral compound con-

sisting of a racemic mixture of S- and R-ketamine:

[RS]-2-(2-chlorophenyl)-2-(methylamino) cyclo-

hexanone hydrochloride. Ketamine has a mo-

lecular weight of 238 Da and a pKa of 7.5. The

trade names are: Ketanest1, Ketanest-S1,

Ketaset1 and Ketalar1. There are numerous

other international trade names for ketamine.

Pure S-ketamine (Ketanest-S1) is now available
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and has several advantages over the R isomer

[15]. The S (+) eutomer has approximately three-

to-fourfold more potency than the R (�) isomer

and is twofold more potent than the racemic

mixture. Interestingly, R-ketamine has greater

affinity for sigma (s1) receptors than S-ketamine

[16]. The S (+) eutomer has a shorter duration of

action because it is cleared more rapidly; this

latter characteristic might allow: (i) lower doses

for a given indication; (ii) greater ease of titration

and (iii) predictability of offset of activity (Figs 1–

3).

Pharmacokinetics
As an analgesic or antidepressant, the favorable

ratio of lipid:water solubility of ketamine renders

it bioavailabile (%) by way of a multiplicity of

routes of administration: intravenous (i.v.; 99%),

intramuscular (i.m.; 93%), subcutaneous (s.c.),

epidural or intrathecal, transnasal (25–50%),

rectal and oral (16%) [9]. The relatively high

lipid solubility and lower binding to plasma

proteins predisposes the agent to rapid uptake

by the brain as well as fairly rapid redistribution.

The a-elimination phase is about 11 min,

whereas the b-elimination phase is 2.5 h after
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FIGURE 2

History of treatment of major depression. A schematic representation of the history of treatment of major depression is given. During 1920–1930, herbs and electricity

[electroconvulsive therapy (ECT)] were used to treat depression. Later, in the 1930s, amphetamines were used as antidepressants. As a result of serendipitous
discoveries in the 1950s, tricyclic antidepressants (TCAs) and monoamine oxidase A inhibitors (MAOIs) were prescribed to treat depression. Subsequently, in the 1990s,

selective serotonin reuptake inhibitors (SSRIs) and/or selective noradrenaline reuptake inhibitors (SNRIs) became the most widely prescribed antidepressant drugs. In

the 2000s, scientists initiated vigorous research into the glutamate (NMDA) system as a means to obtain a more rapid elevation of mood. Once dubbed a
‘pharmacologist’s nightmare’, ketamine has been heralded as the most exciting development in antidepressant pharmacology in more than half a century.
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i.v. administration. Hepatic cytochrome P-450

(CYP) enzymes (CYP3A4 > CYP2C9 > CYP2B6)

metabolize ketamine extensively by demethyl-

ation to the principal metabolite, norketamine

(NK). Although NK is biologically active, it has

only one-third to one-fifth the activity of racemic

ketamine and is eliminated by renal excretion.

Owing to its relatively high lipophilicity, keta-

mine can be only partially removed by dialysis.

One of the most interesting facts about the

pharmacokinetic profile of ketamine is that

several ketamine metabolites [dehydronorketa-

mine (DHNK), hydroxynorketamine (HNK)4a and

HNK4c] were consistently higher in patients with

bipolar depression (BPD) than in patients with

major depressive disorder (MDD) [17]. Thus, N-

demethylation of ketamine to NK is reduced in

patients with MDD relative to BPD. This latter

observation could be because the phenotypic

expression of the CYPs. In addition, an inverse

relationship was noted between ketamine me-

tabolites and psychotomimetic or dissociative

side-effects.

Pharmacodynamics
Receptor effects

Ketamine interacts with an array of receptors,

directly and/or indirectly (See Table 1) [9]. The

most studied receptor interaction is the iono-

tropic glutamate receptor N-methyl-D-aspartate
1850 www.drugdiscoverytoday.com
(NMDA), where ketamine behaves as a non-

competitive antagonist. The NMDA–glutamate

receptor is associated with Ca2+ channels of

dorsal root neurons that transmit pain signals

and are also involved in central sensitization [2].

As a result of being a ligand- and voltage-de-

pendent antagonist, ketamine inhibits the

channel-related flux of cations (Ca2+ and Na+) in

the presence of glutamate and glycine. Keta-

mine [S-(+)-ketamine > racemic ketamine] has

also been reported to inhibit hyperpolariza-

tion-activated, cyclic-nucleotide-modulated

(HCN1) channels [18]. In addition to actions on

the ionotropic glutamate receptor, ketamine

interacts with certain cholinergic, sigmaergic

and opioidergic receptors as well as mono-

aminergic uptake systems (Table 1); these

interactions might contribute to its analgesic

effects [19]. Interestingly, R-ketamine has

greater affinity for sigma (s1) receptors than S-

ketamine [15]. S-(�)-ketamine has more affinity

for the PCP binding site of the NMDA receptor

and, as a result, tends to have greater capacity

to produce hallucinations. Because ketamine

can interfere with the neuronal reuptake of

catecholamines and serotonin, the functions of

the cardiovascular–respiratory system, as well

as the descending inhibitory, neural pathways

that participate in the analgesic effect, can be

influenced.
Epigenetic effects

Interestingly, noncoding RNA molecules such as

miRNAs have emerged as crucial regulators of

neuronal functions. The ability to influence gene

expression via epigenetic mechanisms might be

an interesting approach to novel therapies for

psychiatric and mood disorders. For example,

miRNAs are gene regulators that might repre-

sent therapeutic targets for developing novel

treatments for psychiatric diseases. In this re-

gard, miRNA expression might be part of the

mechanism by which the antidepressant action

of ketamine regulates various brain regions [20].

Moreover, the ability of ketamine and other

antidepressants (e.g. imipramine) to alter histone

deacetylase (HDAC) in the nucleus accumbens,

simultaneously with alleviation of stress-induced

depression, suggests a role for epigenetics in this

condition [21]. These data indicate that epige-

netic molecular events are necessary to reverse

specific stress-induced behavior [22]. These

epigenetic mechanisms might also account for

the sustained therapeutic effects of ketamine.

A recent study shows that pharmacological

(dizocilpine) or genetic (NR1 hypomorphism)

disruption of NMDA receptor signaling reduces

levels of a brain-specific miRNA, miR-219, in the

prefrontal cortex of mice. In vivo inhibition of

miR-219 in the murine brain significantly

modulated behavioral responses associated
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FIGURE 3

(a) Increase in ketamine-related publications. PubMed search covering the past five years shows a
significant increase in ketamine-related research. (b) Publications showing multifaceted roles of ketamine.

An intensive PubMed search shows significantly higher publications for the role of ketamine as an

analgesic (9874) and/or anesthetic (10 393) as compared with a role as a bronchodilator (553) or

neuroprotector (220). Recently, numerous ketamine-related articles (1003) were published regarding its
utility in a variety of mood disorders.
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with disrupted NMDA receptor transmission.

Furthermore, pretreatment with the antipsy-

chotic drugs haloperidol and clozapine pre-

vented dizocilpine (MK801)-induced effects on

miR-219 [23]. By contrast, another recent study

showed that ketamine regulates the expression

of miR-219 in hippocampus [19]. This finding

supports the possibility that ketamine might

reverse stress-induced depression, in part, via

miRNA-regulated pathways. It is of interest
that miR-206 is a crucial novel gene for the

expression of brain-derived neurotrophic factor

(BDNF) induced by ketamine [24].

Anti-inflammatory or immunomodulatory

effects

Immunoinhibitory (anti-inflammatory) effects

of ketamine have been described in vitro in

laboratory [25] and clinical [26] settings; the

use of ketamine is recommended in patients
with sepsis undergoing surgery owing to its

anti-inflammatory effects. Again, several studies

demonstrated the involvement of epigenetics

regulating inflammation specifically in sepsis

[27]. However, a paucity of data exists with

regard to the detailed mechanisms of the anti-

inflammatory effects of ketamine. These latter

effects have been attributed to inhibition of

transcription activator protein-1 and nuclear

factor (NF)-kB, as well as lowering of serum levels

of interleukin (IL)-6, tumor necrosis factor

(TNF)a, inducible nitric oxide synthase (iNOS)

and C-reactive protein. In summary, ketamine is a

unique homeostatic regulator of the acute in-

flammatory reaction and stress-induced immune

disturbances [28]. Therefore, ketamine acts as an

immunomodulator rather than an immunosup-

pressive agent. It is noteworthy that the anti-

inflammatory actions of ketamine also could

contribute to analgesic effects in certain in-

flammatory conditions characterized by pain.

Other effects

There are claims that ketamine is also useful in

treatment of drug withdrawal syndromes: alco-

hol [29] and opioids [30]. The drug has been used

with and without psychotherapy as part of the

regimen. Because of the recent increase in use

and abuse of opioids, difficulties involved in

opioid withdrawal are becoming a health

problem of significant magnitude. In a six-month

study of a small cohort, ketamine was deemed

useful in managing opioid withdrawal [31]. The

rationale for ketamine use in withdrawal sce-

narios is presumed to be based on demonstra-

tions that: (i) NMDA antagonists (ketamine)

suppress opioid dose requirements and opioid-

induced withdrawal in humans and (ii) S-(+)-

ketamine can reduce withdrawal-evoked

hyperexcitation as determined by encephalog-

raphy.

Recently proposed clinical uses
Ketamine: a multipurpose analgesic

Ketamine is a parenteral (i.v., i.m., s.c.) anesthetic

but also provides substantial analgesia at sub-

anesthetic doses. It is classified as a Schedule III

substance primarily because it can produce

psychotomimetic effects at higher doses that are

generally those required for anesthesia. The first

published effect of ketamine-induced analgesia

was for pediatric ophthalmologic procedures

[32]. However, its analgesic efficacy in nocicep-

tive and neuropathic pain is evident, alone or in

combination, when administered by the oral,

intranasal, transdermal, rectal, topical or s.c.

routes [11]. The most common mixtures that

are compounded for topical use are: ketamine
www.drugdiscoverytoday.com 1851
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TABLE 1

Ketamine: multiple modes of action

Receptors Channels and ions Reuptake systems Enzymes Epigenetics

Glutamate (ionotropic) Serotonin ( ) NO synthesis ( ) miRNA ( or )

NMDA (NC ) Na+, K+, Ca2+ ( ) (5HT) (neuronal)

AMPA HDAC ( )

Opioid ( ) Cl+ ( ) Norepinephrine ( )

m (NE)

K
Dopamine ( )

s (DA)

GABA
GABA ( )

GABAA ( )

Cholinergic

Muscarinic ( )

Nicotinic ( )

Dopamine

D2 ( )

Toll-like

TLR4 ( expression)

Abbreviations: NC, noncompetitive; GABA, gamma amino butyric acid; NO, nitric oxide; HDAC, histone deacetylase.

Activity: , stimulates; , inhibits.
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(10%), ketoprofen (10%), lidocaine (5%);

however, it is also compounded with other

agents as well (amitriptyline, clonidine, gaba-

pentin, pregabalin, baclofen) [12]. Intranasally

administered ketamine is particularly useful for

its opioid-sparing effect; especially when there is

breakthrough pain [31], as occurs during opioid

therapy of chronic and acute postoperative pain

[33,34]. Intranasal S-ketamine is also useful in a

pre-hospital setting wherever delivery of anal-

gesia proves challenging such as difficulty

establishing i.v. access or in treating acute in-

juries in a harsh winter environment [35]. Sig-

nificant reductions in pain scores occur within 5–

10 min of administration by the intranasal route.

Likewise, patients undergoing cesarean section

had lower pain intensity and less analgesic

consumption when given ketamine (0.5 mg/kg)

s.c. before or after surgery [36].

Ketamine not only produces analgesia [37] it

also reduces capsaicin-evoked mechanical

hyperalgesia at a gel concentration of 50 mg/ml.

It was proposed that the mechanism of action

might be reduction of central sensitization

caused by absorption of ketamine into circula-

tion. However, it most probably involves a pe-

ripheral effect on nociceptors [3]. There were no

substantial side-effects evoked by ketamine
1852 www.drugdiscoverytoday.com
concentrations when administered in the gel

vehicle used in this study [38].

Topical amitriptyline–ketamine was shown

to be effective for treatment of rectal, genital

and perineal pain and discomfort [14]. The

type of cream vehicle can influence the effi-

cacy of some analgesic agents in combination

medications administered via the percutane-

ous route [39]. Topical gel treatment with

baclofen (10 mg), amitryptiline (40 mg) and

ketamine (20 mg) decreased chemotherapy-

induced peripheral neuropathy (CIPN) symp-

toms in selected patients [40]. Overall, there

was no appreciable systematic absorption of

ketamine in these studies; the hint of potential

benefits warrants further study. Evidence

suggests that further clinical studies are re-

quired to determine if ketamine suppresses

the effectiveness in cancer-related pain such as

that produced by chemotherapy [40]. Keta-

mine has been tested as an adjuvant to

opioids in the treatment of cancer-related

neuropathic pain. Neuropathic pain in cancer

patients is the product of nervous tissue

damage owing to tumor growth or infiltration

and/or neuropathic chemotherapy.

Ketamine has also been touted as a treat-

ment for complex regional pain syndrome [41].
In this condition, patients experience severe

chronic pain which is accompanied by a

constellation of signs and symptoms related to

complex sensory, autonomic, motor and dys-

trophic events [42,43]. NMDA antagonists, such

as ketamine, continue to hold significant in-

terest because of their potential ability to alter

the central sensitization noted in chronic pain

states. In this condition, the hypothesis is that

manipulation of NMDA receptor activity by

ketamine ‘reboots’ aberrant activity of the

brain [43]. As a clinically proven NMDA an-

tagonist, ketamine has the potential to: (i) aid

in unraveling mechanisms mediating chronic

pain and other pain states and (ii) provide new

evidence of the role for NMDA receptors in

neuronal plasticity and central sensitization in

humans.

Ketamine: a novel, rapid-acting

antidepressant

Clinical studies in patients suffering treatment-

resistant depression suggest that the antide-

pressant effect of ketamine: (i) occurs very early in

the course of treatment by i.v. infusion; (ii) exerts a

broad-spectrum antidepressant effect and (iii) is

sustained to subsequent infusions if there was a

rapid response to the first infusion [44].
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In a laboratory setting, acute administration of

ketamine can produce effects in behavioral

screens and other rodent models for depression

(e.g. forced swim test) [45]. Because mood dis-

orders have been linked to abnormalities in

circadian rhythms, the antidepressant actions of

ketamine have been associated with changes in

the function of the circadian molecular ma-

chinery [46]. Ketamine can dampen phase-

shifting responses to light as well as alter the

circadian rhythm of glutamate receptors. A be-

havioral and molecular analysis in zebrafish

showed that Sirtuin1 (Sirt1) was regulated by

ketamine [47]. This is an interesting observation

related to epigenetic mechanisms because Sirt1,

NAD+-dependent HDAC plays a significant part

in circadian rhythm [48].

It is of interest that major depression affects

twice as many women as men. Evidence in

rodents suggests that there might be gender

differences (hormonal influences in response to

ketamine). In rodents, the antidepressant effects

of ketamine are more prominent in female rats;

the response was abolished by ovariectomy and

restored by replacement of estrogen and pro-

gesterone [49].

Additional scientific evidence, in a clinical

setting, suggests an important role for NMDA

receptor signaling via ketamine (0.5 mg/kg i.v.)

as rapid treatment for major depression [50] and

bipolar depression [51] as well as those resistant

to electroconvulsive therapy (ECT) or with sui-

cidal ideation. It has been demonstrated that

ketamine and electroconvulsive therapy possess

activity on common pathways suggesting con-

vergence. Moreover, a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) re-

ceptor involvement is suggested to be crucial for

the antidepressant effects of ketamine [52].

Nevertheless, it is noteworthy that ketamine also

interacts with a multiplicity of receptor systems

(opioidergic, monoaminergic, cholinergic), ion

channels, enzymes and epigenetic systems.

At the molecular level, ketamine-mediated

suppression of resting NMDA receptor activity

leads to inhibition of elongation factor 2 (eF2)

kinase and dephosphorylation of eF2; subse-

quently, de-repression of BDNF messenger RNA

results in augmentation of BDNF synthesis [53].

Thus, one of the other actions of ketamine that

has been implicated as being crucial in the

antidepressant action of ketamine experimen-

tally is an increase in BDNF [54]. Recent evidence

showed a role of miR-21 and miR-206 in BDNF

regulation. By contrast, ketamine has been

shown to inhibit the upregulation of miR-21

expression and matrix metalloproteinase

(MMP)9 protein level after cerebral ischemia [55].
There are several other miRNAs that might be

involved with ketamine action and BDNF regu-

lation. One of the common targets is miR-598-5p

which might have a role in antidepressant ac-

tivity. Thus, ketamine and ECT treatment possess

the ability to reverse stress-induced changes in

multiple miRNAs [20].

Early-life stress is a major contributory factor

to the onset of depression later in life. miRNAs

and HDACs are novel regulators of eukaryotic

gene expression. In this regard, histone acety-

lation is considered a promising therapeutic

target in mood disorders because histone

acetylation reduces histone affinity for DNA.

Thus, HDAC is considered a major epigenetic

regulator of gene expression for several key

proteins. In the nucleus accumbens of rats de-

prived of maternal care administration of keta-

mine and imipramine decrease HDAC activity

indicating that this mechanism might account, in

part, for relief of stress-induced depression [22].

Likewise, ketamine and ECT treatment can re-

verse several stress-induced changes to miRNA

in the hippocampus in early-life stress-induced

pathologies [20]. Temporally, ketamine activates

a series of complex intracellular and extracellular

events in neuronal tissue that eventually induce

increased synaptic plasticity (e.g. long-term po-

tentiation and learning processes); whether the

activity is regionally specific needs further study.

Therefore, the evidence alluded to above

strengthens the assumption that ketamine could

act, in part, by epigenetic mechanisms via

miRNA- and HDAC-regulated pathways. This

eventuality might offer a novel avenue for the

therapeutic approach to prevent or treat de-

pression in the future.

Additionally, there are experimental data

available that implicate a role for mammalian

target of rapamycin (mTOR) and glycogen

synthase kinase (GSK)-3 in the rapid antide-

pressant action of ketamine [56,57]. Likewise, as

stated previously, dysregulation of circadian

rhythms has been implicated in the generation

of depression. Altered clock gene machinery

could represent an essential pathophysiological

defect in mood disorders. Presumably, ketamine

might act at the level of NMDA and/or AMPA

receptors in the suprachiasmatic nucleus to in-

fluence CLOCK:BMAL1 function leading to al-

tered gene expression [46].

Three criteria that have been proposed for

antidepressants are that they should: (i) act

rapidly, delivering symptomatic relief within

hours to days; (ii) produce positive outcomes in a

predictable manner and in a large fraction of the

patient population and (iii) provide sustained

relief over the long-term to help patients
reintegrate into society. In this regard, clinical

studies have shown consistently that the anti-

depressant effect of ketamine is: (i) manifested

within hours to one day (rather than weeks); (ii)

relatively consistent (two-thirds of patients re-

spond in a meaningful way) and (iii) longer than

expected (from several days up to two weeks in

some patients) as based on its half-life. Over the

past ten years, ketamine has become the pro-

totype glutaminergic antidepressant [58]. Thus,

50 plus years after its initial discovery, ketamine

portends to offer new and promising roles as a

therapeutic entity [37,59] and a tool for research

in conditions characterized by pain [12,19] and/

or depression [17,60]. As of July 2014, Phase II

clinical trials of intranasal esketamine [S-(+)-ke-

tamine] for treatment-resistant depression are

underway (http://clinicaltrials.gov/show/

NCT01998958).

Concluding remarks

Ketamine is an example of how an existing drug

can be readapted for multiple licit uses including

treatment of pain and depression. The unex-

pected, but welcome, revival of interest in ke-

tamine represents a prime example of how

existing, multifaceted drugs can be repurposed

and find ‘new’ life as therapeutic agents and

pharmacological tools to investigate new ave-

nues of research in mechanisms mediating pain

and nociception and depression. The mecha-

nisms of ketamine effects are continuing to be

delineated; moreover, novel mechanisms in-

volving epigenetics could be responsible for

some of its clinical activity. Ketamine is a valuable

pharmacological tool in translational research

and has the potential to revolutionize therapy of

several complex conditions that include pain

and depression as prominent symptoms.
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