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ARTICLE INFO ABSTRACT

Available online 9 June 2015 There has been significant recent progress in understanding the neurobiological mechanisms of antidepressant
treatments. The delayed-onset of action of monoamine-based antidepressant drugs have been associated to
their ability to slowly increase synaptic plasticity and neuronal excitability via altering neurotrophic signaling
(synthesis of BDNF and activation of its receptor TrkB), dematuration of GABAergic interneurons and inhibition
of “breaks of plasticity”. On the other hand, antidepressants rapidly regulate emotional processing that — with
the help of heightened plasticity and appropriate rehabilitation - gradually lead to significant changes on function-
al neuronal connectivity and clinical recovery. Moreover, the discovery of rapid-acting antidepressants, most no-
tably ketamine, has inspired interest for novel antidepressant developments with better efficacy and faster onset
of action. Therapeutic effects of rapid-acting antidepressants have been linked with their ability to rapidly regulate
neuronal excitability and thereby increase synaptic translation and release of BDNF, activation of the TrkB-mTOR~
p70S6k signaling pathway and increased synaptogenesis within the prefrontal cortex. Thus, alterations in TrkB sig-
naling, synaptic plasticity and neuronal excitability are shared neurobiological phenomena implicated in antide-
pressant responses produced by both gradually and rapid acting antidepressants. However, regardless of
antidepressant, their therapeutic effects are not permanent which suggests that their effects on neuronal connec-
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tivity and network function remain unstable and vulnerable for psychosocial challenges.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Major depression is a highly disabling psychiatric disorder and
among the biggest contributors to the disease burden worldwide
(Kessler et al., 2003; Olesen et al., 2012). Due to multifactorial nature
and heterogeneous symptomatology the precise etiology of this debili-
tating disorder remains poorly understood. However, among precipitat-
ing factors chronic stress and psychosocial trauma are prevalent
determinants (Liu and Alloy, 2010). In particular, early-life adverse
events increase the vulnerability to stress and facilitate the develop-
ment of major depression later in life (Heim and Nemeroff, 2001). Yet,
not all individuals react to stress similarly; for example genetic vulner-
ability, epigenetic factors, personal trait, previous experiences and

Abbreviations: 5-HT, serotonin; AMPA, amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid; BDNF, brain-derived neurotrophic factor; DBS, deep brain stimulation; ECS, electrocon-
vulsive shock; ECT, electroconvulsive therapy; GABA, gamma-aminobutyric acid; mTOR,
mammalian target of rapamycin; NMDA, N-methyl-D-aspartate; LTP, long-term potentiation;
NA, noradrenaline; SNRI, serotonin and noradrenaline reuptake inhibitor; PNN, perineuronal
net; PTSD, post-traumatic stress disorder; REDD1, regulated in development and DNA damage
responses 1; SSRI, selective serotonin reuptake inhibitor; TrkB, tropomyosin-related kinase B.
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personal development, and environmental factors play a role in the
susceptibility to depressive illness.

Several brain structures and neurocircuits are affected in major
depression. In particular, depressive states are associated with altered
activity and neuronal connectivity (e.g. due to spine loss, neuronal
atrophy) within and between prefrontal and limbic structures, which
are thought to contribute to cognitive and emotional deficits (anhedo-
nia, negative affect), attention biases and impaired decision-making
(Arnsten, 2009; Koenigs and Grafman, 2009; Price and Drevets, 2012).
Reduced neurotrophin support, especially deficient BDNF (brain-
derived neurotrophic factor) synthesis and signaling of its receptor
TrkB, is linked with the atrophic alterations associated with stress and
depression (Castrén et al., 2007; Duman and Aghajanian, 2012;
Duman et al., 1997). Neurobiological basis of altered activity of brain
neurocircuits remain less understood, but abnormal function and/or
expression of ion channels that regulate intrinsic neuronal excitability
have been suggested to play a role (Arnsten, 2009).

The standard treatment for major depression is pharmacotherapy.
However, commonly used antidepressants, such as selective serotonin
(5-HT) reuptake inhibitor (SSRI) fluoxetine, have a delayed onset of
action and significant number of patients responds inadequately or
not at all to these medications (Fava, 2003). These drugs acutely elevate
extrasynaptic monoamine levels but weeks of treatment are required
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before the core symptoms of depression (anhedonia, depressed mood)
will be ameliorated. This discrepancy between antidepressant-induced
acute neurochemical effects and clinical efficacy has puzzled the re-
searchers for several decades and steered the development of neuroa-
daptative theories. On the other hand, emerging evidence support
a hypothesis that antidepressants rapidly initiate functional alterations
within brain neurocircuits, which gradually lead to a more significant
and sustained therapeutic effect (see below) (Fig. 1). Besides depres-
sion, these monoamine-based drugs show therapeutic efficacy against
several other nervous system disorders, such as neuropathic pain,
anxiety and eating disorders. This wide indication spectrum adds
another unsolved characteristic associated with the use of antide-
pressants. Importantly, regardless of indication the therapeutic effects
of these drugs are observed more clearly with a significant delay.

After launching the electroconvulsive therapy (ECT; in 1930s)
and serendipitous discovery of monoamine-based antidepressants (in
1950s), there has been considerable delay in finding truly novel antide-
pressant treatments. Indeed, essentially all antidepressant drugs recently
entered into the clinical markets are based on the basic pharmacological
principle (monoamine theory) of the first antidepressant drugs (e.g.
5-HT and noradrenaline (NA) reuptake inhibitor (SNRI) duloxetine).
Importantly however, NMDA (N-methyl-D-aspartate) receptor blocker
ketamine has received strong attention during the past 10 years as a
novel rapid-acting antidepressant (Duman and Aghajanian, 2012).
Although, some of the pharmacological actions strongly limit the thera-
peutic use of ketamine, understanding of the mechanisms governing
its antidepressant actions is essential for novel rapid-acting and more
effective antidepressant developments.

In this review we will present some of the early groundbreaking
findings and more recent scientific discoveries that provide important
insights into the neurobiological actions of classical antidepressants
and rapid-acting antidepressants, particularly ketamine.

2. From neurotrophin hypothesis

The pioneering work by Dr. Ronald Duman and colleagues show-
ing that monoamine based antidepressants and electroconvulsive
shock (ECS; model of ECT) gradually increase BDNF synthesis in the
hippocampus and cortex (Nibuya et al., 1995) turned the attention
to slowly developing plastic changes as important mediators of
antidepressant action (Duman et al., 1997). Antidepressant-induced
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Fig. 1. Two models depicting delayed-onset action of antidepressants. In scientific
literature (—) the effects of antidepressants are often described as “on-off” phenomenon
where the acute pharmacological effects (?) of antidepressants is followed by a period
of “silence” before the adaptive alterations leading to therapeutic effects become evident.
Clinical situation (—) is more dynamic: antidepressants gradually improve depression
symptomatology, albeit weeks of treatment are required before the core symptoms of
depression, anhedonia and depressed mood are ameliorated. Changes occurring between

(?) the onset of treatment and significant effects of mood are equally important or even
essential for recovery. Red arrow = antidepressant treatment.

BDNF synthesis was further linked with the facilitated monoaminergic
neurotransmission, in particular with cyclic AMP signaling and subse-
quent activation of transcription factor CREB (cAMP related element
binding protein) (Blendy, 2006; Chen et al., 2001; Duman et al., 1997;
Nibuya et al., 1996). Interestingly, the ability of antidepressants to facil-
itate BDNF synthesis through CREB is not directly linked with their
ability to increase the signaling of TrkB, the primary receptor of BDNF.
Indeed, antidepressants activate TrkB signaling already within an hour
of a single treatment (Rantamadki et al., 2006, 2007; Saarelainen et al.,
2003) and this effect appear to be independent of both monoamines
and BDNF (Rantamadki et al., 2011). All in all, the precise molecular
mechanism underlying antidepressant-induced rapid TrkB activation
remains obscure (Di Lieto et al., 2012; Rantamdki et al., 2011) and
awaits further investigations. Equally important, the specific cellular
population(s) showing most prominent changes in TrkB signaling
after antidepressant administration remains unidentified. Yet, these
findings importantly show that the induction of plastic signaling
is very rapid and does not coincide with the therapeutic delay of
monoamine-based antidepressants (Fig. 2). Notably, since TrkB signal-
ing positively regulates Bdnf gene expression (Saarelainen et al.,
2001), BDNF-independent rapid TrkB transactivation may lead to
increased BDNF synthesis, which subsequently activate its cognate
receptor during prolonged treatment (Rantamadki et al., 2007) (Fig. 3).
However, in contrast with BDNF-induced TrkB phosphorylation and
activation, both acute and chronic antidepressant treatment produce
intriguing site-specific phosphorylation changes on TrkB (Di Lieto
et al., 2012; Rantamadki et al., 2007, 2011; Saarelainen et al., 2003),
favoring predominant transactivation mechanism regardless of the
duration of antidepressant administration.

Subsequent studies showed that prolonged antidepressant drug
treatment enhances (or reverses stress-induced abnormalities therein)
several cellular and functional level changes associated with neuronal
plasticity such as hippocampal neurogenesis (Malberg et al., 2000), syn-
aptogenesis (Hajszan et al., 2005, 2009), changes in synaptic efficacy/
strength (long-term potentiation, LTP) and neuronal excitability (Chen
et al,, 2011; Rocher et al., 2004) (Fig. 2). Most importantly, enhanced
BDNF-TrkB signaling appears necessary for antidepressant-like actions
in rodents (Deltheil et al., 2008; Monteggia et al., 2007; Saarelainen
et al., 2003). Since increased BDNF-TrkB signaling has been also sug-
gested to be sufficient for antidepressant actions (Koponen et al.,
2005; Saarelainen et al., 2003; Shirayama et al., 2002; Siuciak et al.,
1997), there has been considerable recent interest in finding novel
antidepressant-like drugs targeting the TrkB receptor (Liu et al., 2010;
Obianyo and Ye, 2013). However, it is important to note that the behav-
ioral outcome of increased BDNF signaling critically depends on specific
brain area and neurocircuit. For example, mesolimbic BDNF signaling is
importantly regulating (mal)adaptive behavioral responses to chronic
social defeat stress and addictive substances (Berton et al., 2006; Hall
etal.,2003; Luet al,, 2004; Wang et al., 2013). Moreover, BDNF signaling
regulates homeostatic functions within the hypothalamus (Takei et al.,
2014) and synaptic connectivity (Park and Poo, 2013) of several other
brain neurocircuits as well, especially during development. Thus,
BDNF-TrkB signaling importantly regulates synaptic plasticity and con-
nectivity in many, if not most, neuronal networks but the network func-
tion itself and plasticity within the network determines the ultimate
outcome. Therefore, direct activation of essentially all TrkB receptors
(i.e. using TrkB specific agonists) within the brain may not be therapeuti-
cally rational (Zhang et al., 2014). Notably however, although currently
used monoamine-based antidepressants do not act as direct TrkB
agonists, they do activate TrkB in various brain areas (Rantamadki et al.,
2011).

3. To network hypothesis

Researchers have recently started to investigate the ultimate func-
tional consequence of antidepressant-induced synaptic plasticity.
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Fig. 2. “Roadmap” of depression, recovery and relapse at the level of prefrontal cortex. I) Vulnerability. Several genetic, epigenetic, environmental and developmental factors make
individual susceptible for depression later in life. II) Disease manifestation. Strong psychosocial stress often precipitate depression episode through altering neurotrophic signaling and
producing aberrant changes in neuronal connectivity (e.g. loss of unstable spines, marked with red color) and in network function (abnormal emotional processing) within the prefrontal
circuits. III) Initiation. Antidepressants facilitate monoaminergic signaling (spines glow in yellow) and thereby regulate rapid changes in emotional processing. Notably, antidepressants
begin to activate plastic neurotrophic signaling already at this stage. IV) Tools for recovery. Antidepressant treatment gradually increases synaptic plasticity by increasing BDNF synthesis,
synaptogenesis (newly formed, but still unstable, spines marked with red color), facilitating synaptic strength and excitability and by removing “brakes of plasticity”. V) Recovery and
reconsolidation. Induced plasticity allows rewiring of neuronal connections. The rewiring and selection of appropriate synaptic connections is guided by the network itself (e.g. emotional
processing) and/or external cues (e.g. rehabilitation). Note that the relative efficacy of antidepressant drug (——) compared to placebo (———) increase by time. VI) Remission.
Monoamine depletion (5-HT|; — -- —) and drug discontinuation lead to rapid and gradual re-emergence of depressive symptoms, respectively. Schematic presentation of proposed

alterations in prefrontal (PFC) connectively during different stages are depicted above. Red arrow = antidepressant treatment.

Indeed, neuronal wiring and selection of synaptic connections is inher-
ently active process that is determined by the network function itself
and environmental stimuli (Hensch, 2005). This process is best under-
stood in early life heightened plasticity stages (i.e. sensitive periods)
when the neuronal networks are initially formed (“programmed”) and
consolidated ("hard-wired") by the guidance of environmental cues
(Hensch, 2005). Importantly, adverse conditions early in life may thus
produce long-lasting sustainable alterations within the network that
make the individual susceptible to specific brain disorders later in life
(Castrén et al., 2012) (Fig. 2). Formation of perineuronal nets (PNN)
and emergence of other “breaks of plasticity” and maturation of
GABAergic inhibition are important neurobiological mechanisms un-
derlying the closure of these sensitive periods (Hensch, 2005).

Recent evidence suggests that chronic antidepressant treatment pro-
duce “dematuration” of GABAergic interneurons, removal of the “breaks
of plasticity” and reduced inhibition within certain brain neurocircuits
(Chen et al.,, 2011; Karpova et al., 2011; Kobayashi et al., 2010; Maya
Vetencourt et al., 2008; Ohira et al., 2013). Most importantly, this
reopening of juvenile-type of plasticity strongly facilitates the re-
organization of synaptic connections guided by the environmental
stimuli or functional therapy (Fig. 2). Specifically, combination of fluox-
etine with active rehabilitation - but neither alone - completely re-
covers developmental amblyopia (so called lazy eye; i.e. vision of one
eye strongly and persistently reduced due to improper visual input
during the sensitive period) in adult rats (Maya Vetencourt et al.,
2008). These findings are pretty remarkable since the condition has
been considered incurable after the termination of sensitive period in

the visual cortex. In order to test the similar concept - reinstatement
of juvenile-type of plasticity — can be similarly induced with antidepres-
sants in mood-related neuronal networks, Dr. Eero Castrén and
collegues recently investigated the impact of the antidepressant treat-
ment on plasticity within the fear circuits of amygdala. Pathophysiolog-
ical fear learning against safe situations and fear generalization (e.g.
post-traumatic stress disorder, PTSD) can be overcome by active desen-
sitization process during juvenile period but not effectively in adult-
hood. Importantly, combination of extinction training (a model of
exposure therapy) with fluoxetine, but neither alone, induced a
sustained loss of conditioned fear memory in adult mice (Karpova
et al., 2011). These exciting findings are in line with the network hy-
pothesis of antidepressant action (Castrén, 2005): antidepressants are
not therapeutical per se but they merely produce a plastic state — height-
ened adaptability - in the brain that significantly facilitates the impact of
rehabilitation (Castrén and Hen, 2013; Castrén and Rantamdki, 2010).

Although the network theory of antidepressant action is still in its
infancy and needs further experimental and especially clinical investi-
gations, it already helps to understand many of the intriguing character-
istics associated with the use of classical antidepressants. The formation
of plastic state and rewiring of neuronal connections inevitably takes
time (delayed onset of action) and lack of rehabilitation may, at
least partially, underlie the inefficacy associated with the use of med-
ication (treatment-resistance/lack of efficacy). Moreover, drug-
induced plasticity appears to be not restricted in mood-related
neurocircuits but rather act in many levels (therapeutic effects against
several nervous system disorders).
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The true therapeutic potential of drug-induced plasticity and combi-
nation of functional rehabilitation in nervous system disorders remains
to be investigated. It is important to note however that combination
of fluoxetine with rehabilitation promotes recovery in ischemic stroke
patients devoid of psychiatric illness such as depression (Chollet et al.,
2011). On the other hand, if the appropriate environment is critical for
recovery, what happens in inappropriate environmental conditions?
Interestingly enough, monocular deprivation (“inappropriate environ-
ment”) in adult animals chronically treated with fluoxetine produced
the shift in ocular dominance in favor of the open eye and poor vision
of the visually deprived eye (amblyopia) (Maya Vetencourt et al.,
2008). All in all, the neurobiological mechanisms of antidepressants ap-
pear to be much more complex than originally thought and the specific
context of which they are used seem to have significant role in deter-
mining the ultimate functional outcome. It should be thus much more
closely examined the outcomes of antidepressant use in different clini-
cal contexts (e.g. correlation of clinical efficacy with patient diaries,
adverse environment).

On the other hand, the therapeutic effects of antidepressants are not
permanent and re-emergence of symptoms after the discontinuation
of effective antidepressant treatment is frequently observed. Conse-
quently, months of “steady-state” antidepressant treatments are com-
monly used — and they appear effective (Shelton, 2004). Moreover,
5-HT depletion rapidly produces relapse in depressive patients under
effective SSRI medication (Delgado et al., 1990). Therefore, antidepres-
sant treatments do not target the core of depression pathology but
rather produce beneficial functional and morphological alterations in
brain neurocircuits that remain vulnerable and are readily subjected
to remodifications (Fig. 2). Since sustained drug treatment is effective,
does the network become more depended on serotonergic transmis-
sion? It will be very important to investigate the stability of neuronal
connections rewired during antidepressant treatment in adulthood.

4. Rapid alterations in network function — emotional processing

Although antidepressants alleviate depressed mood slowly, they
certainly do something during the very early stages of treatment. The
lag-time associated with antidepressants is often misinterpreted as an
on-off phenomenon, i.e. clinical effects of the drugs appear only after
several weeks of treatment (Fig. 1). It is important to note however,
that the relative efficacy of antidepressant drug compared to placebo
increase by time and slight reduction of some of the symptoms is
often observed already during the first week of treatment (Taylor
et al., 2006). Thus, antidepressants gradually reduce symptoms but the
significant clinical effect become more obvious only after exceeding cer-
tain (patient-specific) threshold. More intriguingly, accumulating clini-
cal data indicates that antidepressant drugs rapidly regulate
information processing in neurocircuits implicated in depression
(Harmer et al., 2009). Depressive patients have biased emotional pro-
cessing towards negative emotions (Beck, 2008; Bouhuys et al., 1999;
Bradley and Mathews, 1983; Gur et al., 1992), and this functional abnor-
mality is thought to underlie and even maintain depressive states. In
healthy controls, acute antidepressant treatment shift emotional pro-
cessing towards the positive domain (Browning et al., 2007; Harmer
et al,, 2003). On the other hand, fearful face recognition and startle re-
sponses (e.g. eye-blink response to emotional stimuli) are facilitated by
acute, but attenuated by prolonged treatment of antidepressants,
although amygdala show sustained reduced responses to fearful and
aversive stimuli (Browning et al., 2007; Harmer et al., 2003, 2004,
2006; Rawlings et al., 2010; Windischberger et al., 2010). Chronic anti-
depressant treatment also improves social problem solving behavior
and reduces submissive behavior (Knutson et al., 1998; Raleigh et al.,
1991; Tse and Bond, 2002), which is commonly observed in depressed
people. In summary, the early effects of antidepressants on the process-
ing of positive emotional stimuli are maintained whereas continuous
treatment bring beneficial effects on threat processing and behaviour in

general (Harmer and Cowen, 2013). Most importantly, similar observa-
tions (shift towards positive emotional processing, attenuated amygdala
responses to threat stimuli) have been observed in depressed patients
(Harmer et al., 2003), although most studies have focused on prolonged
drug administration and thus the rapidity of the responses awaits further
clarifications. Effects of antidepressants on emotional processing appear
to be regulated by increased monoaminergic tone (Booij and Van der
Does, 2011; Harmer and Cowen, 2013), which directly links the primary
pharmacological mechanism of antidepressants on these responses.

Based on emotional processing theory of antidepressant action, ini-
tial shift in emotional processing leads to gradual positive changes in so-
cial reinforcement and mood (Fig. 2) (Harmer and Cowen, 2013). This
psychological reconsolidation may be further facilitated - or even de-
pend on - by enhanced synaptic plasticity (see above). Thus, the net-
work theory and emotional processing theory are not mutually
exclusive but complementary: both theories link antidepressant action
with cognitive or behavioral theories of depression.

Further efforts have been put to investigate the network-level func-
tional correlates that could help to better explain the emotional and net-
work theories of antidepressant actions. These brain-imaging studies
have shown that depressed patients show abnormal resting state func-
tional connectivity - measured as temporally linked activity between
neuronal networks - in specific brain circuits within and between
prefrontal and limbic structures (Anand et al., 2005; Greicius et al.,
2007; Lui et al., 2011; Perrin et al., 2012; Sheline et al., 2010; Veer
et al.,, 2010; Wang et al.,, 2015). Most notably, increased functional
connectivity between dorsomedial prefrontal cortex (termed dorsal
nexus) and many of its target areas are highly associated with depres-
sive states and are thought to underlie rumination (i.e. compulsive at-
tention on the symptoms of distress and potential negative
consequences) (Sheline et al., 2010). Importantly, clinically effective an-
tidepressant treatments (antidepressant drugs, ECT) normalize this hy-
peractivity (Perrin et al., 2012; Wang et al., 2015). Interestingly, and
strictly in line with the emotional processing and network theories of
antidepressant action, antidepressants alter functional neuronal con-
nectivity also in healthy volunteers (McCabe and Mishor, 2011;
McCabe et al,, 2011; van Wingen et al,, 2013). Further studies are need-
ed to understand the precise neurobiological basis of antidepressant-
induced functional neuronal connectivity, how quickly it appears and
how stable it is. One caveat is that such scientific questions can be cur-
rently investigated in animals only under anesthesia, which in its self
may alter neuronal connectivity or modify the responses produced by
antidepressants. In clinical practice however, functional brain imaging
techniques are becoming more and more valuable tools to predict and
correlate therapeutic responses in patients.

5. Towards rapid-acting antidepressant drugs

Since slowly developing functional and morphological changes
likely precede depressive episodes, it is very conceivable that such adap-
tive alterations cannot be recovered quickly. Importantly however,
some treatments show superior rapidity over commonly used antide-
pressants to ameliorate depressive symptoms. Intriguingly, all these
rapid-acting antidepressants, including sleep deprivation (Giedke and
Schwarzler, 2002) and ECT (Payne and Prudic, 2009), strongly and rap-
idly regulate inhibition-excitation balance and thereby neuronal excit-
ability in the brain. ECT remains as the treatment of choice for drug-
refractory depressive patients and when fast relief of symptoms is need-
ed (e.g. suicidal ideation). Although currently delivered under general
anesthesia, ECT remains stigmatized and its use may lead to side effects
such as cognitive impairment (Payne and Prudic, 2009). Moreover, de-
spite its long therapeutic use, the precise neurobiological mechanism
governing the antidepressant effects of ECT remain obscure, although
BDNF signaling is considered to play important role (Taylor, 2008). In-
terestingly enough, the therapeutic effect of ECT is associated with
post-seizure neuronal inhibition (evident as burst suppression in the
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Fig. 3. Neurobiological mechanisms and effects of rapid acting antidepressant ketamine. A single ketamine treatment induces rapid changes in cortical excitability through blocking inhib-
itory GABAergic interneurons (not shown) and subsequent activation of AMPA receptor signaling in glutamatergic neurons. Increased AMPA receptor signaling lead to synaptic translation
and release of neurotrophin BDNF, which further induces TrkB-mTOR-p70S6k signaling pathway, facilitation of synaptic plasticity, increase in synaptic proteins (PSD95, GluR1) and syn-
aptogenesis. Notably, classical antidepressants also acutely increase TrkB receptor signaling and phosphorylation of CREB with an unknown mechanism. Depressive symptoms re-emerge
within days after ketamine treatment. Neurobiological correlates (?) for the transient therapeutic effects of ketamine remain unknown. Red arrow = ketamine.

electroencephalogram (EEG)) (Perera et al., 2004), although to our
knowledge no experimental studies examining rodent models of ECT
have specifically followed along with this phenomenon.

Recent studies demonstrate that ketamine, a dissociative anesthetic,
produces antidepressant actions. Compared to classical antidepressant
drugs, ketamine does not only act on a novel pharmacological target
(the NMDA receptor), its antidepressant effects also appear very rapidly
- within few hours - after a single treatment (Fig. 3). The therapeutic
effect of a single ketamine treatment also sustains for several days —
thus long after the drug has been removed from the brain. Antide-
pressant effects of ketamine have been mostly studied and shown in
treatment-resistant depressive patients, even in patients that do not
respond to ECT (Berman et al., 2000; O'Leary et al., 2015; Zarate et al.,
2006). Ketamine is effective already at subanesthetic doses, however
researchers have recently got interested whether anesthetic doses of
ketamine would produce more sustained effects (Okamoto et al., 2010).

Antidepressant-like effects of a single ketamine administration
has also been observed in rodents (Li et al., 2010; Lindholm et al.,
2012). Experimental data suggest that the antidepressant effects of
ketamine are mediated by rapid regulation of inhibition-excitation
balance (increased cortical excitability) (Cornwell et al., 2012; Di
Lazzaro et al., 2003), fast synaptic translation and the release of BDNF
in the prefrontal cortex that further leads to increased signaling of
the TrkB-mTOR-p70S6k pathway, facilitation of synaptic plasticity
and alterations in dendritic spine dynamics (Autry et al., 2011; Li
et al., 2010; Maeng et al., 2008) (Fig. 3). Indeed, the magnitude of
therapeutic response to ketamine varies between patients, a phenome-
non recently associated with the differential alterations in BDNF ho-
meostasis and Bdnf gene polymorphism (Haile et al., 2014; Laje et al.,
2012). The potential role of mTOR pathway in the pathophysiology of
depression has been recently strengthened by observations demon-
strating increased expression and signaling of REDD1 (regulated in
development and DNA damage responses 1), a negative regulator of
mTOR, in depressive patients and animals subjected to chronic stress
(Otaet al.,, 2014). Interestingly, REDD1 expression in the prefrontal cor-
tex is also sufficient to produce anxiodepressive phenotype and

dendritic spine loss reminiscent with chronic stress (Ota et al., 2014).
Moreover, the levels of mTOR and its downstream kinase p70S6k are
reduced in the prefrontal cortex of depressive patients (Jernigan et al.,
2011).

The discovery of rapid acting effects of ketamine has strongly in-
creased the interest towards novel faster acting antidepressant develop-
ments (Duman and Aghajanian, 2012; Zarate et al., 2013). Intriguingly,
antimuscarinic agent scopolamine have been also shown to produce
rapid antidepressant effects (Furey and Drevets, 2006) and, similarly
with ketamine, increased glutamatergic transmission, mTOR signaling
and synaptogenesis have been associated with these responses (Voleti
et al., 2013). Moreover, burst-suppressing anesthesia (see above) has
been shown to produce antidepressant effects comparable to those of
ECT, without affecting cognitive performance (Langer et al., 1995).
More importantly, antidepressant effects of isoflurane seem to appear
already after the first treatment episode (Langer et al., 1995). A recent
clinical study supports the hypothesis that isoflurane possess antide-
pressant effects (Weeks et al., 2013), however, this study did not specif-
ically look the rapidity of these responses. Yet, differential therapeutic
responses in patients (Greenberg et al., 1987; Langer et al., 1995)
and unknown neurobiological basis have strongly reduced the inter-
est to further evaluate anesthesia as a potential (and intriguing) substi-
tute of ECT. Thus, better understanding of the mechanisms underlying
antidepressant actions of isoflurane in experimental animals is needed.

The antidepressant effects of ketamine appear within few hours,
a time window where environmental guided rewiring of synaptic
connections may not yet take place, although ketamine rapidly in-
creases synaptic markers and regulates the formation of functional
excitatory synapses (Li et al,, 2010). Whether these new synaptic
contacts bring about physiological changes in neuronal connectivity or
merely produce “noise” that beneficially alters existing network func-
tion remains unknown. Interestingly, hyper- and hypoactivity within
specific prefrontal circuitries have been associated with depression.
Local deep brain stimulation (DBS) and effective antidepressant treat-
ment normalize these alterations (Mayberg et al., 2005). Moreover,
optogenetic and electrical stimulations of the specific prefrontal
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circuitries can induce either antidepressant-like or depression-like be-
havioral responses in rodents (Barthas et al., 2015; Hamani et al.,
2010a,b, 2012). These studies clearly demonstrate that the mood-
related circuits can be effectively and rapidly regulated which is directly
reflected in behavior. In line with these findings, functional connectivity
within mood-related neuronal circuits are facilitated already during an
acute ketamine administration in rats (Gass et al., 2014), whereas
blunting of functional connectivity - as observed after repeated treat-
ment of classical antidepressants - is observed 24 h after the treatment
in humans (healthy volunteers) (Scheidegger et al., 2012), a time win-
dow associated with most significant antidepressant effect of ketamine.

Importantly, similarly with classical antidepressants, the therapeutic
effects of ketamine gradually disappear (Murrough et al., 2013).
New dose will be effective however repeated administration (cf. ECT)
of psychoactive substance with strong abuse potential is warranted. It
remains to be investigated how transient and stable effects ketamine
produces on neuronal connectivity and network function and whether
the circuits could be stabilized through rehabilitation. Notably, pre-
frontal circuitries are particularly vulnerable for environmental chal-
lenges (Izquierdo et al., 2006). Moreover, since monoaminergic
antidepressants and ketamine produce qualitative and quantitatively
different changes on synaptic plasticity, their combined use should be
examined.

6. Conclusions

There has been important recent progress in understanding the
neurobiological mechanisms of classical antidepressants and rapid-
acting antidepressant ketamine (Figs. 2-3). Monoamine based antide-
pressants rapidly regulate emotional processing and TrkB neurotrophin
signaling. Continued antidepressant treatment further produces height-
ened plasticity that allows rewiring and efficient reconsolidation of
neuronal connections guided by intrinsic and extrinsic cues. These find-
ings help to explain (and substantiate) the superior therapeutic efficacy
of combined use of pharmacotherapy and functional rehabilitation but
also raises critical thinking about the potential impact of such heighted
plasticity in undesired environmental conditions.

Increased neuronal excitability, activation of TrkB—-mTOR-p70S6k
signaling and increase in cortical synaptogenesis are implicated in the
antidepressant actions of ketamine. Thus, induced plasticity through
TrkB signaling is implicated in the mechanisms of action of both gradu-
ally acting and rapid-acting antidepressant drugs. However their mech-
anisms and effects on TrkB receptor differ (Autry et al., 2011; Di Lieto
et al, 2012; Rantamadki et al.,, 2011) which leads to qualitatively, quanti-
tatively and spatially differential, yet largely unknown, downstream
signaling events and functional consequences.

Regardless of antidepressant, their therapeutic effects are often
not permanent. Consequently, antidepressant treatments do not target
the core of depression pathology but produce beneficial functional and
morphological alterations in brain neurocircuits that are readily
subjected to remodifications. Better understanding of the acute
and long-lasting neurobiological effects of diverse antidepressant
treatments on neuronal connectivity and function will lead to more
effective therapeutic approaches against major depression and other
nervous system disorders that benefit from induced plasticity.
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