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Modern pediatric medicine and surgery rely on 
highly skilled anesthesia management to achieve 
comfort and amnesia during painful and distress-

ing procedures that are performed frequently in children of 
all ages. Over the last several decades, we have developed 
sophisticated anesthesia delivery and monitoring protocols 
that enable us to accurately assess and maintain stability 
of a child’s physiological parameters, even under the most 
challenging surgical and pathological conditions or extremes 
of immaturity. The assured stability of cardiovascular and 
respiratory parameters led us to believe that an early expo-
sure to anesthesia causes no harm to the child’s development. 
However, over the last decade, we are being forced to recon-
sider our notion of anesthesia safety during critical periods 
of brain development. Numerous reports of harmful effects 
of anesthetics on neuronal and cognitive growth in young 
animals, and slowly emerging evidence in humans, suggest 
potentially harmful and long-lasting behavioral sequellae.

The very initial findings have suggested that clinically 
relevant anesthetics, alone or in combination, induce signifi-
cant and widespread neuroapoptotic degeneration of devel-
oping neurons in immature rats.1–3 Over the years, additional 
mammalian species (e.g., mice, guinea pigs, pigs, and non-
human primates) were found to be susceptible to anesthe-
sia-induced developmental neuroapoptosis.4–8 Although the 
initial insult is very robust and ultimately leads to neuronal 
deletion,9 signs of damage in the remaining neurons, though 
more subtle and hence often detected only at the ultramicro-
scopic or functional level, are observed some weeks after the 
initial insult and are impressive as well. Anesthetic effects on 
the remaining neurons are manifested as significant damage 
to synapse formation, stability and function,3,10–13 impressive 

fragmentation of neuropil, and distortion of mitochondrial 
morphogenesis and regional distribution.11,14,15 Hence, anes-
thesia-induced neurotoxicity is not a transient phenomenon 
but more of an ongoing process exhibiting different patho-
morphological characteristics.

The main impetus for improving our understanding of 
anesthesia-induced neurotoxicity was fueled by very early 
findings, suggesting that the morphological impairments in 
young rodents are followed by impaired cognitive abilities.3 
Of particular concern was the fact that the gap in learning 
widened in adulthood and was manifested as inability to 
master more complicated learning paradigms.3 Similar obser-
vations of delayed learning and diminished accuracy in the 
performed tasks were made in nonhuman primates exposed 
to anesthesia in early infancy.16 Although a direct causal link 
between morphological impairments and cognitive delays 
has not yet been confirmed,17,18 strategies aimed at curtailing 
neuronal damage have been effective in preventing or ame-
liorating anesthesia-induced cognitive impairments.17

Since the emerging retrospective clinical studies suggest 
a potential link between an early exposure to anesthesia and 
behavioral sequellae later in childhood,19–22 there is urgency 
to improve our understanding of the mechanisms responsi-
ble for the neurotoxicity so that the most effective protective 
strategies can be introduced into clinical practice.

Isoflurane was recognized early on as one of the most 
neurotoxic volatile anesthetics not only in the severity of 
morphological damage but also in the seriousness of the 
behavioral impairments.3,23 Pathomorphological markers 
suggest that isoflurane causes dose-dependent and wide-
spread neuronal death that is apoptotic in nature and eas-
ily detected by monitoring caspase-3 activation, the final 
step leading to DNA fragmentation and the formation of 
apoptotic bodies.3 Although both intrinsic and extrinsic 
pathways of apoptosis play an important role in caspase-3 
activation,24 activation of apoptosis by isoflurane is primar-
ily via the intrinsic pathway, that is, it is mitochondria-
dependent. Isoflurane damages mitochondrial integrity and 
impairs the function of scavenging enzymes.14 This in turn 
causes overproduction of superoxide ions and hydrogen 
peroxide (a byproduct of superoxide dismutation), result-
ing in oxygen-free radical overload that ultimately leads 
to excessive lipid peroxidation of mitochondrial inner and 
outer membranes.17 These actions have been linked to fur-
ther compromise in mitochondrial integrity11,15,17 and cyto-
chrome c leak.24 Cytochrome c, in turn, activates caspases-9 
and -3 and causes a cascade of events ultimately leading 
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to DNA fragmentation, formation of apoptotic bodies, and 
neuronal demise.24 Although the downstream mechanisms 
have been well worked out, the initial step that promotes 
excessive cytochrome c leak is still under investigation.

In this issue of the journal, Drs. Cheng and Levy25 sug-
gest that the initial step may involve isoflurane-induced 
upregulation of cytochrome c peroxidase activity. They sug-
gest that in the presence of hydrogen peroxide, cytochrome 
c oxidizes cardiolipin to hydroperoxycardiolipin, that mobi-
lizes cytochrome c from the inner mitochondrial membrane 
and enables it to be released after permeabilization of the 
outer membrane, leading to a vicious cycle of further cyto-
chrome c leak, upregulated oxygen-free radical production, 
lipid peroxidation, and protein oxidation. With the addi-
tion of this insight, we have a better understanding of the 
cascade of events initiated in mitochondria and resulting in 
neuroapoptotic degeneration (Fig. 1).

The major advance provided by improved understand-
ing of anesthetic-induced neurodegeneration is the potential 
to design clinically attainable methods to protect against 
anesthesia-induced developmental neurotoxicity. A review 
of all neuroprotective strategies is not within the scope of 
this editorial, but it is noteworthy that some neuroprotective 
approaches focus on curtailing excessive oxygen-free radical 
production, lipid peroxidation, and on protecting mitochon-
drial function and integrity, thus minimizing cytochrome c 
leak.17,26 In their study, Drs. Cheng and Levy25 bring to our 
attention another potential clinically relevant method, which 
relies on coadministration of subclinical concentrations of 

carbon monoxide (CO) (resulting in the carboxyhemoglobin 
[COHb] levels lower than the ones known to be symptom-
atic in humans, around 10% and higher). They report that 
administration of 5 ppm CO for only an hour during iso-
flurane (at 2%) anesthesia in 7-day-old mouse pups (around 
the peak of mouse brain vulnerability) results in significant 
decrease in caspase-3 activation in neurons of the somato-
sensory neocortex, hippocampus, and hypothalamic/tha-
lamic regions. This concentration of inhaled CO does not 
cause significant increase in COHb level compared with 
inhaled air (sham controls). When a significantly higher 
inhaled CO concentration (100 ppm) was coadministered, 
they noted an additional decrease in isoflurane-induced 
neuroapoptosis but at the risk of generating 3- to 4-fold 
higher blood levels of COHb (3%–4%) compared with sham 
controls. Nevertheless, the authors claim that both low (5 
ppm) and higher (100 ppm) concentrations of CO should be 
considered subclinical and not harmful.

A closer look at potential mechanisms for CO-induced 
neuroprotection suggested that isoflurane-induced cyto-
chrome c peroxidase activity and cytochrome c leakage 
were ameliorated by CO coadministration. However, the 
authors do not confirm that isoflurane causes upregula-
tion of oxidized cardiolipin or that CO prevents excessive 
cardiolipin oxidation, an important step in compromising 
mitochondrial integrity. It is important to note that they do 
not examine whether CO coadministartion protects against 
isoflurane-induced cognitive impairments, a demonstra-
tion that would be necessary to establish potential clinical 

Figure 1. Proposed schematic diagram of mitochondria-dependent, isoflurane-induced apoptotic pathways. Isoflurane promotes translocation 
of Bax from cytosol to the mitochondrial membrane. In addition, isoflurane increases the activity of cytochrome c (Cyt. c) peroxidase, which 
results in increased conversion of cardiolipin (CL) to hydroperoxycardiolipin (HPCL). Both events cause an increase in mitochondrial permeabil-
ity. This, in turn, mobilizes cytochrome c from the inner mitochondrial membrane, enabling it to be released after permeabilization of the outer 
membrane and leading to a vicious cycle of reactive oxygen species (ROS) upregulation, lipid peroxidation, and compromised mitochondrial 
integrity and further cytochrome c leak. Released cytochrome c activates caspase-9 and then caspase-3, leading to DNA fragmentation and 
the formation of apoptotic bodies.



E Editorial

1162     www.anesthesia-analgesia.org� anesthesia & analgesia

relevance. The lack of cognitive correlates, especially, is 
of concern since the latest publication by Drs. Cheng and 
Levy and their colleagues suggests that CO exposure alone 
(at 5 or 100 ppm) for 3 hours caused apoptotic neurode-
generation in young mice, followed by significant cognitive 
deficits and impairment in social interactions.27

In summary, this study addresses an important issue 
in developmental neurobiology and moves us a step 
closer to understanding the pathways responsible for 
anesthesia-induced neuroapoptosis. Although the use of CO 
may seem extreme based on devastating outcomes reported 
with CO asphyxia, CO is endogenously produced, and dur-
ing low-flow general anesthesia, it is known to result in a 
slight increase in COHb (<1%). In that sense, the 5 ppm con-
centration used in this study that resulted in similar levels of 
COHb could be considered “physiological,” thus suggesting a 
potentially useful and readily available neuroprotective tool. 
A remaining problem is that the amelioration of apoptotic 
activation, though significant, was not complete, thus leaving 
many immature neurons vulnerable and unprotected even 
with the higher inhaled CO concentration (100 ppm). E
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