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The association of general anesthesia with developmental neurotoxicity, while nearly impossible to study in pe-
diatric populations, is clearly demonstrable in a variety of animal models from rodents to nonhuman primates.
Nearly all general anesthetics tested have been shown to cause abnormal brain cell death in animals when ad-
ministered during periods of rapid brain growth. The ability to repeatedly assess in the same subjects adverse ef-
fects induced by general anesthetics provides significant power to address the time course of important events
associatedwith exposures.Minimally-invasive procedures provide the opportunity to bridge the preclinical/clin-
ical gap by providing themeans tomore easily translate findings from the animal laboratory to the human clinic.
Positron Emission Tomography or PET is a tool with great promise for realizing this goal. PET for small animals
(microPET) is providing valuable data on the life cycle of general anesthetic induced neurotoxicity. PET
radioligands (annexin V and DFNSH) targeting apoptotic processes have demonstrated that a single bout of gen-
eral anesthesia effected during a vulnerable period of CNS development can result in prolonged apoptotic signals
lasting for several weeks in the rat. Amarker of cellular proliferation (FLT) has demonstrated in rodents that gen-
eral anesthesia-induced inhibition of neural progenitor cell proliferation is evident when assessed a full 2 weeks
after exposure. Activated glia express Translocator Protein (TSPO) which can be used as a marker of presumed
neuroinflammatory processes and a PET ligand for the TSPO (FEPPA) has been used to track this process in
both rat and nonhuman primate models. It has been shown that single bouts of general anesthesia can result
in elevated TSPO expression lasting for over a week. These examples demonstrate the utility of specific PET
tracers to inform, in a minimally-invasive fashion, processes associated with general anesthesia-induced devel-
opmental neurotoxicity. The fact that PET procedures are also used clinically suggests an opportunity to confirm
in humans what has been repeatedly observed in animals.
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1. Introduction

In the USA more than one million children less than 5 years old un-
dergo general anesthesia every year, including 1.5 million infants less
than 12 months of age. Although general anesthesia is often required
to alleviate pain and stress, stabilize vital signs and provide consistent
conditions for surgery and diagnostic procedures, questions remain re-
garding the long-term neurotoxic and neurodegenerative effects of
anesthetic exposure on the developing brain (Aker et al., 2015;
Jevtovic-Todorovic, 2010; Mann and Kahana, 2015; Sun, 2010). Recent
experimental evidence indicates that early exposure to general anes-
thetics can have adverse effects on the developing central nervous sys-
tem (CNS). While anesthetic-induced neurotoxicity has been
investigated primarily using neurophysiological, neuropathological
and behavioral approaches, additional non-invasive biomarkers that
allow for the dynamic detection and monitoring of adverse effects are
highly desired (Pogge and Slikker, 2004; Zhang et al., 2013c). Molecular
imaging technologies, such asmagnetic resonance imaging (MRI), com-
puted tomography (CT) and positron emission tomography (PET) allow
for the noninvasive collection of imaging data providing anatomical and
functional information regarding biochemical, physiological, pathologi-
cal and pharmacological processes in vivo.

Amongst a variety of molecular imaging systems, PET is a unique
modality with both high spatial resolution (typically ~2 mm
for microPET scanners appropriate for use with small animals)
and high sensitivity that offers relative and absolute quantitation
(Chatziioannou, 2002; Luker et al., 2003; Myers, 2001; Phelps, 2000;
Walker et al., 2004; Zhang et al., 2013c). With the high sensitivity of
PET (nanomolar to picomolar concentrations can be detected), biologi-
cal processes of interest can be studied bymeasuring the uptake and re-
tention of radiotracers that target those processes (Jacobs et al., 2003;
Zimmer et al., 2014c). PET imaging can, thus, provide valuable insights
into brain-related biological processes, including those associated with
neuronal plasticity, neuronal apoptosis, degeneration, regeneration,
and neurotoxicity (Hammoud, 2016; Ory et al., 2015; Ory et al., 2016;
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Pagano et al., 2016; Roy et al., 2016; Wang et al., 2007; Zimmer et al.,
2014a; Zimmer et al., 2014b; Zimmer et al., 2014c). MicroPET imaging
using animal models of human diseases allows for repeated kinetic
analyses of special molecular events in the same experimental subject,
providing minimally-invasive assessments of therapeutic effects over
time (Jacobs et al., 2003; Zhang et al., 2013c).

2. General anesthetic-induced neurotoxicity in the developing brain

General anesthesia is widely utilized in pediatric patients for sur-
gery, diagnostic and therapeutic procedures. Although the exact neural
mechanisms that result in general anesthetic-induced loss of conscious-
ness, analgesia, immobility and, importantly, amnesia remain unknown,
both intravenous and volatile general anesthetics are thought to exert
their primary effects by interfering with neurotransmission (Aker et
al., 2015; Culley et al., 2007; Mann and Kahana, 2015; Soriano and
Anand, 2005). Most of the currently used general anesthetics have ei-
ther NMDA receptor blocking properties, such as ketamine and nitrous
oxide, or GABA receptor enhancing effects, such as isoflurane and
propofol (Bianchi et al., 2008; Xie et al., 2007). The action of these recep-
tors involves ligand-gated ion channels or G proteins and is crucial for
early neurodevelopmental events including synapse formation,
neuroplasticity, and neuronal survival (Wang and Slikker, 2008; Zhang
et al., 2009; Zhang et al., 2013c).

Neurotoxicity, as discussed here, will be defined as the occurrence of
adverse effects on the structure or function of the nervous system in-
duced by exposure to biological, chemical or physical agents (Costa,
1996; Culley et al., 2007; Harris and Blain, 2004; Pogge and Slikker,
2004; Slikker et al., 2004). From the third trimester of gestation to the
3rd years of life, the human brain undergoes a rapid growth spurt dur-
ing which the brain grows at an accelerated rate characterized by neu-
ronal proliferation and differentiation, and dendritic arborization and
synaptogenesis (Aker et al., 2015; Culley et al., 2007; Soriano and
Anand, 2005). This critical period of rapid growth occurs at different
times relative to birth in different species occurring during postnatal
days 1–14 in rats andmice (du Bois andHuang, 2007). During this erup-
tion of neurogenesis, gliogenesis and synaptogenesis the brain is exqui-
sitely vulnerable. Environmental insults during this period can
adversely impact brain development and cause long-lasting functional
deficits (Aker et al., 2015; Culley et al., 2007; Dobbing and Sands,
1979; Soriano and Anand, 2005;Wang and Slikker, 2008). For example,
continuous blockade of NMDA receptors or activation of GABA receptors
by general anesthetics during a critical period of CNS development may
reduce the establishment of important synapses (du Bois and Huang,
2007; Forcelli et al., 2011; Ikonomidou et al., 1999; Olney et al., 2002;
Scallet et al., 2004; Slikker et al., 2005; Slikker et al., 2007a; Slikker et
al., 2007b; Stefovska et al., 2008; Zhou et al., 2011).

2.1. Ketamine

As a non-competitive antagonist of NMDA receptors, ketamine is
widely used to induce and maintain general anesthesia in pediatric pa-
tients (Kurdi et al., 2014). NMDA receptor blockade by ketamine leads
to inhibition of neuronal activity and, in the immature CNS, can trigger
abnormal neuronal apoptosis (Brambrink et al., 2012; Ikonomidou et
al., 1999; Olney et al., 2002; Scallet et al., 2004; Slikker et al., 2007a;
Wang et al., 2005; Wang et al., 2006). Previous studies indicate that
multiple doses of ketamine (20 mg/kg every 2 h for 6 times) given to
PND 7 rats triggers a massive wave of apoptotic neurodegeneration af-
fecting many neurons in several major regions of the developing
brain, especially the frontal cortex (Zou et al., 2009b). Newborn rhesus
monkeys (postnatal day 5 or 6) anesthetized via intravenous ketamine
infusions for either 9 or 24 h exhibited significantly increased neuronal
cell death in layers II and III of the frontal cortex (Zou et al., 2009a). Five
hours of ketamine-induced general anesthesia in postnatal day 6 rhesus
neonates or gestation day 120 fetuses (pregnant rhesus females
anesthetized) was also shown to cause significant increases in neuronal
apoptosis in both the fetal and neonatal brains (Brambrink et al., 2012).
Ketamine-induced neuronal apoptosis has also been shown to occur in
primary cultured rat neurons (Li et al., 2014; Liu et al., 2013a,b). Neuro-
degeneration induced by early exposure to ketamine is associated with
long-term cognitive deficits, including impaired learning and memory
in animals when tested as adults (Huang et al., 2012; Paule et al., 2011).

2.2. Isoflurane plus N2O

The combination of nitrous oxide (N2O), an NMDA receptor antago-
nist, with an inhalational general anesthetic can significantly decrease
the amount of anesthetic agent necessary to produce loss of conscious-
ness and analgesia. Therefore, the combination of N2O gas and
isoflurane (ISO) vapor is widely used in pediatric surgical procedures
(Zhang et al., 2013b; Zou et al., 2008, 2011). In PND7 rat pups exposed
to N2O (75%) plus ISO (0.55%) for 6 or 8 h, massive neuronal apoptosis
was observed, especially in layers II and III of the frontal cortex (Zou
et al., 2008). The neurotoxic effects of ISO + N2O have also been inves-
tigated in a nonhuman primate (NHP) rhesusmonkey model. Exposure
of PND 5 or 6 animals to N2O (70%) plus ISO (1.0%) for 8 h lead to a sig-
nificant increase in the number of caspase-3-, silver stain- and Fluoro-
Jade C-positive cells in the frontal cortex, temporal gyrus andhippocam-
pus (Zou et al., 2011).

2.3. Sevoflurane

Sevoflurane is a one of the most widely used inhaled anesthetics for
the induction andmaintenance of general anesthesia in both adults and
children (Delgado-Herrera et al., 2001; Li et al., 2013). Sevoflurane is a
volatile, non-flammable and nonexplosive liquid administered after va-
porization. Anesthesia induced by inhalation of sevoflurane causes little
airway irritation, is associated withminor cardiovascular and respirato-
ry side effects, and has minimal interactions with other drugs
(Delgado-Herrera et al., 2001; Li et al., 2013). Due to the rapid induction
and recovery from sevoflurane-induced anesthesia, it has been widely
used in infants and children for pediatric inpatient and outpatient sur-
gery (Lerman et al., 1994; Li et al., 2013; Zhou et al., 2012). Sevoflurane
is believed to activate glycine and GABAA receptors and inhibit NMDA
receptors (Brosnan and Thiesen, 2012; Hollmann et al., 2001;
Nishikawa and Harrison, 2003; Tagawa et al., 2014). In a study
employing neonatal Cynomolgus monkeys, no significant learning or
memory deficits or behavioral abnormalities were observed early in
life after receiving sevoflurane anesthesia at surgical plane (2–2.6%)
for 5 h on PND 6 (Zhou et al., 2015). In contrast, single episodes of
sevoflurane induced general anesthesia (2–2.5% for 4–6 h) on PND 7
were reported to lead to widespread neuronal apoptosis in several
brain regions and cause long-term behavioral impairments and memo-
ry dysfunction in rats (Fang et al., 2012; Zheng et al., 2013; Zhou et al.,
2012). After exposure to 2.0% sevoflurane for 5 h, early cell death was
found in organotypic hippocampal slices (OHS) from rat pups on
PND14. At 72 h, cell death was significantly detected in the OHS pre-
pared from the PND7 and 4 rat pups (Piehl et al., 2010). Repeated expo-
sures to sevoflurane during gestation (in utero) in the rat also resulted
in abnormal levels of neuronal apoptosis in the brains of offspring
(Wang et al., 2012b). Prolonged sevoflurane treatment (6 h) also re-
duced the regeneration of hippocampal neural stem cells isolated
from Sprague-Dawley rat embryos (Nie et al., 2013). In the mouse, ex-
posure to sevoflurane on PND 7 resulted in increased neuroapoptosis
in the hippocampal region and was associated with subsequent abnor-
mal social behaviors and deficits in fear conditioning in adulthood
(Liang et al., 2010; Lu et al., 2010; Satomoto et al., 2009; Tagawa et al.,
2014; Takaenoki et al., 2014; Yonamine et al., 2013; Zhang et al.,
2008). It has been postulated that sevoflurane causes neuronal apopto-
sis via a MEK/ERK1/2 MAPK signaling pathway (Nie et al., 2013; Wang
et al., 2012a; Wang et al., 2013). DNA microarray analysis of frontal
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cortical tissues from the brains of rhesusmonkeys exposed on PND 5 or
6 to 9 h of 2.5% sevoflurane also demonstrated that essential lipid com-
ponents were significantly down regulated. Abnormal levels of several
cytokines and increased Fluoro-Jade C staining were also observed in
the brains of these animals (Liu et al., 2015).

3. MicroPET imaging of general anesthetic-induced neurotoxicity

The application ofmicroPET imaging technologies to the study of liv-
ing animals has provided the ability to repeatedly collect sensitive and
quantitative three-dimensional molecular information with increased
resolution from the brains of experimental animals such as mice, rats
and nonhuman primates (Chen et al., 2004; Chen et al., 2009; Jang,
2013; Kornblum et al., 2000; Lang, 2000; Ohashi et al., 2008). In order
to repeatedly assess the adverse neuronal effects associated with early
exposure to general anesthetics, multiple microPET protocols have
been developed underwhich it is possible tomeasure the brain's uptake
of radiotracers as quantitative markers of metabolic activity, neuronal
apoptosis and damage in the living rat and monkey (Liu et al., 2014;
Liu et al., 2013a,b; Zhang et al., 2009; Zhang et al., 2011; Zhang et al.,
2013a; Zhang et al., 2013b; Zhang et al., 2016; Zhang et al., 2012).
After injection of a radiotracer into animal subjects, the labeled mole-
cule often binds to specific targets and, thus, via visualization with the
microPET, it is possible to characterize the bio-distribution of that spe-
cific tracer. The radiation emitted by the labeled tracer is detected by
the PET scanner allowing for the detection, localization and quantifica-
tion of signal intensity. By utilizing multiple radioactive tracers, several
biological or pathological processes such as tissue perfusion, metabo-
lism, receptor binding and protein expression can be qualitatively and
quantitatively assessed (Lancelot and Zimmer, 2010; Myers and
Hume, 2002; Schnockel et al., 2010; Wagner and Langer, 2011; Zhang
et al., 2013c).

3.1. MicroPET imaging of neurotoxicity utilizing a marker of apoptosis

Apoptosis, also called as programmed cell death, is a regulated, ener-
gy-dependent process that results in the generation of cellular debris
that is subsequently phagocytized. In contrast to necrosis, apoptosis is
characterized by membrane blebbing, cell shrinkage, loss of membrane
asymmetry and attachment, nuclear fragmentation, chromatin conden-
sation, and chromosomal DNA fragmentation (Tait, 2008;Wolters et al.,
2007). Always initiated by either the presence of a stimulus or the re-
moval of a suppressing agent, apoptosis is known as a programmedpro-
cess for eliminating superfluous or unnecessary cells or cells with DNA
damage. Being a fundamental physiological process, apoptosis likely
plays a critical role in many physiological disorders (Aloya et al.,
2006). As demonstrated by studies in animal models, exposure to gen-
eral anesthetics during the brain growth spurt can induce widespread
nerve cell loss, typically by increasing apoptotic processes (Hayashi et
al., 2002; Jevtovic-Todorovic et al., 2003; Olney et al., 2002; Scallet et
al., 2004; Slikker et al., 2007b; Wang et al., 2005; Zou et al., 2009b). To
obtain information about the life-cycle of the apoptotic events associat-
ed with early exposure to general anesthetics, apoptotic processes were
investigated using microPET ligands that targeted those processes.

Apoptosis involves several specific biochemical pathways and most
apoptotic imaging probes are designed to target specific molecules
that are involved in the apoptotic cascade. Based on the cellular process-
es that apoptotic tracers are designed to target, they can be character-
ized into five main categories (Neves and Brindle, 2014; Tait, 2008):
1) molecules that target caspase-3/7 activation; 2) radiolabeled probes
based on phosphonium cations that can be used to assess themitochon-
drial membrane potential; 3) agents that detect plasma membrane
phospholipid asymmetry and phosphatidylserine (PS) exposure; 4)
molecules that target depolarization of plasmamembrane; and 5) com-
pounds that accumulate in apoptotic cells (Berridge et al., 2009; Neves
and Brindle, 2014; Tait, 2008).
3.1.1. MicroPET imaging of apoptosis using [18F]-annexin V
When a cell is entering apoptosis, phosphatidylserine (PS), one of

the four major phospholipids that make up the cell membrane, will ex-
ternalize from the intracellular to the extracellular side of the plasma
membrane (Allen et al., 1997; Fadok et al., 1992; Lahorte et al., 2004;
Saraste and Pulkki, 2000; Zijlstra et al., 2003). This redistribution of PS
to the exterior of the cell membrane is one of the early characteristics
of apoptotic cells and serves as a signal to macrophages and adjacent
normal cells to phagocytize and digest the components of the cell un-
dergoing apoptosis (Schlegel and Williamson, 2001; Strauss et al.,
2008; Yagle et al., 2005). Therefore, externalized PS proved to be a
very promising biomarker for the early detection of apoptotic cells in
vivo. Annexin V, a member of the superfamily of annexin proteins, is a
36-kDa human protein that exhibits Ca2+-dependent binding to PS
with high affinity. Annexin V, thus, has been widely utilized as an apo-
ptotic radiotracer when labeled with various isotopes (Grierson et al.,
2004; Kwak et al., 2015; Lahorte et al., 2004; Lu et al., 2015; Neves
and Brindle, 2014; Strauss et al., 2008; Toretsky et al., 2004; Zijlstra et
al., 2003).

Relevant to the present topic, neuronal apoptosis induced by keta-
mine exposure was analyzed in rodent model using PET imaging with
radiolabeled Annexin V (Zhang et al., 2009; Zhang et al., 2013c). On
PND 7, rat pups were randomly assigned to control or treated groups
to receive either ketamine or saline subcutaneously every 2 h. Ketamine
(20 mg/kg/injection) was administered in six injections (Zou et al.,
2009b) and control animals received six injections of saline under the
same schedule MicroPET scanning was performed on PND 35 when
each rat was scanned for 2 h after the i.v. injection of [18F]-annexin V.
While the uptake of [18F]-annexin V was evident in the brains of both
control and ketamine treated rats with maximal levels being attained
5min after the injection, the high radioactive signal in the regions of in-
terest in controls decreased rapidly, whereas the radioactivity in the ke-
tamine-treated brains remained at relatively high levels for the duration
of the 40 min PET scan. This persisting signal in the ketamine-treated
brain is thought to represent radiolabeled annexin V bound to the
outer membranes of ketamine-induced apoptotic neurons, the sites ex-
pressing PS. These results demonstrated that cellular degeneration
caused by a PND 7 exposure to ketamine persisted for at least 4 weeks.

As an imaging agent that binds to externalized PS, annexin V can also
accumulate on necrosing neurons with ruptured plasma membranes
and, thus, it is difficult to clearly differentiate apoptotic from necrotic
cells (Lahorte et al., 2004) using this compound. Additionally, annexin
V also binds to neurons that are under other formsof pathophysiological
stress (Kim et al., 2006; Lorberboym et al., 2006; Strauss et al., 2008;
Zeng et al., 2008). According to its bio-distribution and pharmacokinetic
profile, annexin V is cleared slowly from the blood, has a poor signal-to-
noise ratio, limited brain access, and is characterized by high back-
ground activity, especially in the liver, kidneys, and gut (Kwak et al.,
2015; Neves and Brindle, 2014; Niu and Chen, 2010; Reshef et al., 2010).

3.1.2. MicroPET imaging of apoptosis using [18F]-DFNSH
[18F]-5-(dimethylamino)-N′-(4-fluorobenzylidene) naphthalene-1-

sulfonohydrazide ([18F]-DFNSH) is included in the group of compounds
that accumulate in the cytoplasm of cells undergoing apoptosis. All of
the compounds belonging to this group are small molecules with a fluo-
rescent dansyl core and they can be synthesized with high yield and ef-
ficiency (Reshef et al., 2010; Zeng et al., 2008). Compared with [18F]-
annexin V, which binds to PS localized on the external leaflet of plasma
membrane, DFNSH is taken up into the cytoplasm of different types of
apoptotic cells. The mechanism(s) that underlies the intracellular up-
take of DFNSH is not clearly known, but it has been postulated to involve
the loss of plasma membrane potential, activation of the membrane
phospholipid scramblase system, and the acidification of the external
plasmamembrane leaflet and cytosol of apoptotic cells. The intracellular
uptake of [18F]-DFNSH differentiates apoptotic cells from viable and ne-
crotic cells and it has an improved signal-to-noise ratio, making [18F]-
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DFNSH a more specific apoptotic tracer than annexin (Cohen et al.,
2009; Grimberg et al., 2009; Reshef et al., 2010). Having a lowmolecular
weight, this small probe is cleared predominantly by the kidney and has
a fast elimination rate (Neves and Brindle, 2014; Niu and Chen, 2010).

Rats exposed to ketamine on PND 7 were scanned on PND 35 with
18F labeled DFNSH to investigate the anesthetic-induced neuronal apo-
ptosis (Zhang et al., 2011; Zhang et al., 2013b). The microPET imaging
data demonstrated that an initial distribution of [18F]-DFNSH into
brain was evident in both control and ketamine treated rats. However,
the radioactivity in the frontal cortex of ketamine-treated brains
remained at relatively high levels for at least 40 min compared to con-
trols. The persistent signal in ketamine treated brains is consistent
with our earlier study using [18F]-annexin V (Zhang et al., 2009) and
supports the interpretation that the cellular degeneration caused by a
single PND 7 exposure to ketamine is sustained for a much longer
time than previously known. Since the half-life of ketamine in the rat
is relatively short (Scallet et al., 2004; Slikker et al., 2007b), the noted
persistent apoptosismust be a result of processes triggered by the initial
exposure but not dependent upon the continued presence of ketamine.

Neuronal apoptosis induced by the combined administration of ISO
(1%) and N2O (70%) was also evaluated using [18F]-DFNSH and
microPET imaging (Zhang et al., 2013b). On PND 7, rats in the experi-
mental group were exposed to ISO/N2O for 8 h with or without acetyl-
L-carnitine (ALC), and control rats were exposed to room air only,
with or without ALC. ALC, an esterified compound of L-carnitine (LC),
may provide neuroprotective benefits in neurodegenerative and aging
situations (Abdul et al., 2006; Abdul and Butterfield, 2007; Calabrese
et al., 2005; Calabrese et al., 2006; Ishii et al., 2000; Virmani et al.,
2001; Zaitone et al., 2012; Zanelli et al., 2005). Although the mecha-
nism(s) underlying the neuroprotective effect(s) of ALC are not
known, theymay involve improvement ofmitochondrial function, anti-
oxidant activity, stabilization of membranes, and/or modulation of pro-
tein and gene expression (Barhwal et al., 2008; Jones et al., 2010; Scafidi
et al., 2010).

On PNDs 14, 21, and 28, microPET/CT images were obtained using
[18F]-DFNSH for 90 min. In PND 14 treated rats, the uptake of [18F]-
DFNSH in frontal cortex was increased and the duration over which
the tracerwaswashed outwas prolonged. The noted increase radiotrac-
er uptake remained significant for at least one week after exposure. ALC
greatly attenuated the DFNSH uptake suggesting that it can effectively
block the anesthetic-induced neuronal apoptosis.

Sevoflurane-induced neuronal apoptosiswas also assessed in the rat
using PET imaging with [18F]-DFNSH. In this experiment, neonatal rats
were exposed for 9 h to sevoflurane at 2.5% in oxygen on PND 7.
MicroPET scans were performed following the injection of [18F]-
DFNSH on PNDs 14, 28 and 63. At PND 14, the radioactivity in frontal
cortical areas in exposed rats was significantly higher than that seen
in controls. In contrast, radioactivity in the same regions of interest in
animals exposed to sevoflurane for either 3 or 6 hwere not significantly
different from those of control animals at PNDs 14, 28, and 63. There
was an exposure duration increase in radiotracer signal but the effects
were not statistically significant. These data indicate the results from
imaging studies can provide dose-response data (Liu et al., 2013a,b).
3.2. MicroPET imaging of neurotoxicity using other tracers

3.2.1. MicroPET imaging using [18F]-FLT
3′-Deoxy-3′-18F-fluorothymidine ([18F]-FLT) is a radioactive thymi-

dine analog that is used in vivo as a marker of cell proliferation (Liu et
al., 2014; Rasey et al., 2002; Tseng et al., 2005; Viertl et al., 2011). In
cells, FLT can be phosphorylated by cytosolic thymidine kinase-1
(TK1) which is resistant to dephosphorylation by thymidine phosphor-
ylase. [18F]-FLT, thus, gets trapped within the cytosol after being
monophosphorylated by TK1 (Lee et al., 2011; Rasey et al., 2002;
Tseng et al., 2005). Since TK1 is a key enzyme in the DNA-salvage
pathway, it is strongly regulated by the cell cycle and selectively upreg-
ulated before and during the S phase. The uptake and retention of [18F]-
FLT provides a metric of the activity of TK1 and can be used as a nonin-
vasive biomarker of cell proliferation (Lee et al., 2011; Liu et al., 2014;
Rasey et al., 2002). It has been recently reported that PET imaging of
[18F]-FLT has been used for the non-invasive monitoring of endogenous
neural stem cell proliferation in the normal and ischemic adult rat brain
in vivo (Jacobs et al., 2007; Rueger et al., 2010).

In one of our previous studies, aspects of sevoflurane-induced neu-
ronal toxicity were investigated using [18F]-FLT microPET. Neonatal
rats were exposed to 2.5% sevoflurane or room air for 9h on PND 7.
On PND 21, 2weeks following the exposure, standard uptake values
(SUVs) for [18F]-FLT in the hippocampal formationwere significantly at-
tenuated in the sevoflurane-exposed rats, suggesting decreased cell
proliferation in this region. Four weeks following exposure, the effects
of sevoflurane exposure were no longer evident. These investigations
indicated that a single prolonged exposure to sevoflurane during rapid
brain development causes signification inhibition of neural progenitor
cell proliferation that lasts for at least 2 weeks (Liu et al., 2014).

3.2.2. MicroPET imaging with [18F]-FEPPA
In the CNS, translocator protein (TSPO), previously referred to as the

peripheral benzodiazepine receptor (PBR), is mainly located in glial
cells, particularly in microglia and astrocytes, with the highest densities
in the olfactory bulb, choroid plexus, and the ependymal lining of the
ventricles(Imaizumi et al., 2008; Lang, 2002). In the CNS, TSPOs partici-
pate in multiple physiological functions including neurosteroid synthe-
sis, nutritional support of neurons and modulation of CNS immune
reactions. The expression of the TSPO in brain is significantly increased
in response to a wide variety of insults. Experimental results show that
such increases are mainly due to activated glial cells. In response to in-
tercellular signaling induced by neurotoxicants, microglial activation
usually begins several hours after exposure and lasts for several days
after injury onset (Banati, 2003; Ito et al., 2010; Takeuchi et al., 1998).
In their activated state, microglia undergomorphological changes, accu-
mulate and proliferate at the site of neuronal damage, synthesize pro-
inflammatory cytokines, and release toxic molecules and metabolites
to eliminate damaged cells (Briard et al., 2008; Ito et al., 2010;
Papadopoulos et al., 2006). Various studies have demonstrated that
TSPOs are involved in numerous nervous system disorders such asmul-
tiple sclerosis, cerebral ischemia and stroke, epilepsy, brain injury, neu-
rotoxic brain damage, and neurodegenerative diseases (Benavides et al.,
1987; Briard et al., 2008; Lang, 2002; Oku et al., 2010; Papadopoulos et
al., 2006). Following exposure to neurotoxicants such as general anes-
thetics and other insults, the levels of TSPO increase significantly in
both astrocytes and microglia in damaged brain areas in a time-depen-
dent and region-specific manner (Kuhlmann and Guilarte, 1999;
Kuhlmann and Guilarte, 2000; Lang, 2002).

18F-labeled fluoroethoxybenzyl-N-(4-phenoxypyridin-3-yl) acet-
amide ([18F]-FEPPA) is a specific TSPO ligand that can be efficiently syn-
thesized. With high radiochemical yields and high specific activity,
[18F]-FEPPA has proved useful in nonhumanprimate and human studies
(Bennacef et al., 2008; Rusjan et al., 2011; Schweitzer et al., 2010;
Wilson et al., 2008; Zhang et al., 2012; Zhang et al., 2013b; Zhang et
al., 2013c). Due to the increased expression of TSPOs in areas of neuro-
nal injury, [18F]-FEPPA is used as a marker of microglial activation and,
thus, as a surrogate marker of neuronal damage. (Zhang et al., 2012;
Zhang et al., 2013a; Zhang et al., 2013b; Zhang et al., 2013c; Zhang et
al., 2016).

To monitor the neurotoxicity induced by ISO + N20 in a nonhuman
primate model, PND 5 or 6 rhesus monkey neonates were exposed to a
mixture of 70%N2O/30% oxygen and 1% ISO for 8 h and controlmonkeys
were exposed to room air only. One day later, [18F]-FEPPA (56MBq)was
injected into the lateral saphenous vein and microPET/CT images were
obtained over the next 2 h. MicroPET/CT scans were repeated for each
monkey one week, three weeks and 6 months after the anesthetic
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exposure (Zhang et al., 2013a; Zhanget al., 2012). During eachmicroPET
imaging session, [18F]-FEPPA quickly distributed into the brains of both
treated and control monkeys. One day after anesthetic exposure the up-
take of [18F]-FEPPA was significantly increased in the temporal lobe of
treated animals. One week after exposure the uptake of [18F]-FEPPA in
the frontal lobe of treated animals was significantly greater than that
in controls. These effects were gone three weeks after exposure. Signif-
icant brain injury in both the temporal cortex at one day, and frontal
cortex at one week after anesthetic exposure was suggested by the
time course of the FEPPA retention (Zhang et al., 2013a; Zhang et al.,
2012). Although [18F]-FEPPA does not directly target dying neurons, in-
creases in the expression of TSPOs are thought to co-occur with insults
such as neuronal damage and death. Repeatedly assessing the uptake of
[18F]-FEPPA in vulnerable brain areas provides the opportunity to eval-
uate the severity and time course of anesthetic-induced glial activation,
that presumably occurs in concert with, or in reaction to, neural dam-
age. The reasons underlying the different time courses in different
brain areas are not known but would seem to indicate differential sen-
sitivities of different brain areas to anesthetic-induced neurotoxicity,
which is also seen using other metrics of damage such as fluoro jade
and caspase-3 stains.

Sevoflurane induced neurotoxicity in a nonhuman primate model
was also assessed using microPET imaging with [18F]-FEPPA (Zhang et
al., 2016). Neonatal rhesus monkeys (postnatal day 5 or 6, 3–6/group)
were exposed for 8 h to 2.5% sevoflurane with or without ALC. Control
monkeys were exposed to room air with or without ALC. Following
the exposure, microPET/CT scans using [18F]-FEPPA were performed re-
peatedly on day one, one and threeweeks, and two and sixmonths after
exposure. The uptake of [18F]-FEPPA in the frontal and temporal lobes
was increased significantly 1 d and oneweek after exposure, respective-
ly. Co-administration of ALC anesthetic exposure, the uptake of [18F]-
FEPPA in the anesthetic-exposed monkeys remained higher than that
seen in the controls at most time points, but this effect was not statisti-
cally significant at this point, likely due to the small number of subjects
utilized. At 2 and 6 months of age, the uptake of [18F]-FEPPA in the an-
esthetic-exposed monkeys returned to levels similar to those observed
in controls (Zhang et al., 2016). According to microPET data, exposing
the developing monkey brain to sevoflurane during a period of rapid
brain development can induce adverse effects in several brain regions
including the frontal cortex and temporal lobe, as evidenced by in-
creases [18F]-FEPPAuptake indicatingmicroglial activation. Co-adminis-
tration of ALC, while not affecting depth of anesthesia, blocked, at least
partially, this anesthetic–induced effect (Zhang et al., 2016).

4. Limitations and safety issues of clinical applications

The development of molecular imaging approaches constitutes a
step towardsmeeting the clinical needs for biomarkers of neurotoxicity.
MicroPET/CT imaging using made-for-purpose radiotracers has the po-
tential to provide great assistance in clinical practice with respect to
early and accurate diagnoses as well as in monitoring the progression
of neurodegeneration induced by anesthetic agents. Although research
results in preclinical studies have proved to be very promising, addition-
al efforts are required to make an effective translation into the clinic
(Heneweer and Grimm, 2011; Preuss et al., 2014; Shulkin, 2004).
With high sensitivity and specificity, PET imaging can facilitate detailed
mapping of radiotracer distribution using only picomolar concentra-
tions which greatly reduces the likelihood of toxicity (Heneweer and
Grimm, 2011; Massoud and Gambhir, 2003). Dosimetry of radiotracers,
however, needs to be carefully considered in pediatric patients since ra-
diation is a well known carcinogen. Compared with adults, the lifetime
risk of acquiringmalignant solid tumors per unit of radiation is higher in
all pediatric age groups, especially in infants and small children (Fahey
et al., 2016a,b; Gelfand and Lemen, 2007). Recently, hybrid multi-mo-
dality imaging systems, such as PET/CT, have been widely introduced
and frequently used. PET/CT systems provide additional information
and enhanced anatomical localization, improve image resolution and
increase the accuracy of diagnosis. CT scan based attenuation correc-
tions can reduce total imaging time by avoiding transmission scans
and consequently reducing the time of anesthesia. This improves safety
by reducing the length of sedation and anesthesia, however, radiation
exposures in small children are not without risk (Preuss et al., 2014;
Roberts and Shulkin, 2004; Shulkin, 2004).

5. Summary

While general anesthetics arewidely applied and required in pediat-
ric patients for surgery and diagnostic procedures, the safety of general
anesthesia in infants and children is still under review. Recent studies
using animal models indicate that early exposure to commonly used
general anesthetics can adversely affect developing nervous tissue and
even result in significant abnormal neuronal apoptosis in vulnerable
brain areas. Preclinical and clinical findings suggest an association be-
tween developmental exposures to general anesthetics and subsequent
deficits in cognitive function. Molecular imaging modalities, such as
microPET, provide the opportunity to repeatedly, and in aminimally-in-
vasive fashion, monitor anesthetic-induced neurotoxicity by targeting
specific molecular and cellular events in vivo.
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