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proliferating cells in the dentate gyrus (DG) were labeled with different thymidine analogs
(EdU, 1dU, and ClIdU) at 4, 8, and 21 days, respectively, in young (3-month-old) and aged
(20-month-old) rats prior to a 3h exposure to isoflurane, control, propofol, or 10%
intralipid. 24h following general anesthesia, brains were collected for analysis. The
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number of cells co-localized with neuronal differentiation and maturation labels with
each of the thymidine analogs was quantified. In addition, new cell proliferation 24hr
following anesthesia was assessed with anti-Ki67. The effect of anesthesia on astrocytes
was also assessed with anti-S100p. Isoflurane or propofol did not affect new cell prolifera-
tion, as assessed by Ki67, in the DG of young or aged rats. However, propofol significantly
decreased the number of differentiating neurons and increased the number of astrocytes
in the DG of young, but not aged, rats. Isoflurane significantly decreased the number of
maturing neurons and increased the number of astrocytes in the DG of aged, but not
young, rats. Isoflurane and propofol anesthesia altered postnatal hippocampal neurogen-
esis in an age and agent dependent matter.
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1. Introduction

A rising number of clinical studies suggest that anesthesia
and surgery could be risk factors for later cognitive impair-
ment, especially in the young (Johnson et al., 2002; Loepke
and Soriano, 2008; Sun, 2010) and aged brain (Abildstrom
et al., 2000; Moller et al., 1998, Canet et al., 2003; Monk et al.,
2008). Moreover, recent in vitro (Liang et al., 2008; Xie et al.,
2007; Xie and Xu, 2012) and in vivo (Popic et al., 2012; Yu et al.,
2013; Zhao et al., 2010) studies suggest an anesthetic-induced
neurotoxic effect on both of these age groups (Culley et al.,,
2007). However, it remains unclear whether these cognitive
changes are due to the effects of surgery or anesthesia.

Postnatal generation of neurons occurs throughout life in
two brain regions (Altman and Das, 1965; Kempermann and
Gage, 2000), the subventricular zone of the lateral ventricle,
where it has been suggested that neurons migrate into the
olfactory bulb and are involved in olfactory memory
(Pignatelli and Belluzzi, 2010; Sultan et al., 2010); and the
subgranular zone of the dentate gyrus (DG) of the hippocam-
pus where neurons appear to be involved in spatial learning
and memory (Dupret et al., 2008; Kempermann, 2002). Gen-
eration of new neurons in the DG has been shown of key
importance to hippocampal function, and has been shown to
be involved in spatial memory (Broadbent et al, 2004;
Moscovitch et al., 2005) suggesting that anesthetics may act
on hippocampal neurogenesis to affect hippocampal depen-
dent cognitive functions. Recently, there has been an increase
in studies looking at the anesthetics effects on neurogenesis
in vivo (Stratmann et al., 2009, 2010; Zhu et al., 2010) and in
vitro (Culley et al., 2011, Sall et al., 2009; Zhao et al., 2013), but
results differ from each other mainly because of anesthetic
agent, dose, and age group being studied. Consequently, it is
critical to gain more insight on the effects of anesthetics on
hippocampal neurogenesis.

A time line of neuronal precursor maturation in the DG
has been suggested by Ming and Song (2005), while details
regarding this differentiation and maturation remain to be
resolved, the timing of differentiation and maturation, based
on developmental markers, appears to be consistent
(Bonaguidi et al., 2012; Ming and Song, 2005). Postnatal
hippocampal neurogenesis is a multistep process that
involves proliferation of neural progenitor cells, followed by
the differentiation to a neuronal phenotype, migration during
the late phase of differentiation, neuronal maturation and
synaptic integration of the these cells into the existing
hippocampal circuitry (Ming and Song, 2005; Piatti et al,
2006). These developmental stages can be identified by cell
morphology and the expression of developmentally regulated
markers (Kempermann et al., 2004; Ming and Song, 2005).
Some nascent cells also differentiate into astrocytes that
populate the DG (Palmer et al., 2000), and stimuli that affect
postnatal neurogenesis also affect gliogenesis (Kempermann
et al., 2002).

Based on the suggested timeline of neuronal precursor
development in the DG (Ming and Song, 2005); in the present
study, we investigated the effects of two commonly used
anesthetics, the inhaled anesthetic isoflurane and the intra-
venous anesthetic propofol, on nascent cells undergoing

proliferation, early (4-day-old cells), late (8-day-old cells)
differentiation, and maturation (21-day-old cells) in the DG
of young (3 mo) and aged (21 mo) rats at the time of exposure
to anesthesia. Anesthetic-induced alteration of any stage of
postnatal hippocampal neurogenesis may, in part explain,
the resulting cognitive impairment surgery and anesthesia.

2. Results

The results of these experiments are presented in Table 1
(isoflurane) and Table 2 (propofol). Young animals had a
statistically greater amount of cell proliferation in the DG
than aged animals (F3,;=8.57, p<0.0001 and F;;=28.93,
p<0.0001 for isoflurane and propofol, respectively). Similarly,
we found a decrease in the number of nascent cells under-
going early differentiation (F,1,=16.61, p<0.0001 and
F»11=59.75, p<0.0001 for isoflurane and propofol, respec-
tively), late differentiation (F;,,=70.18, p<0.0001 and
F;11=73.02, p<0.0001 for isoflurane and propofol, respec-
tively) and maturation (F;;;,=16.48, p<0.0001 and
F;11=52.65, p<0.0001 for isoflurane and propofol, respec-
tively) in aged rats as compared to young rats.

2.1.  Cell proliferation in the DG (Ki67+) is not altered 24 h
after isoflurane or propofol

Neither isoflurane (Table 1) nor propofol (Table 2) anesthesia
altered new cell proliferation in the subgranular zone of the
DG 24 h following anesthesia as assessed by Ki67 (F;;=0.51,
p=0.818 and F 5,=0.98, p=0.47, respectively).

2.2.  Propofol altered nascent cells undergoing early
differentiation (EAU+) in the DG of young rats

Isoflurane did not alter the number of nascent cells under-
going early differentiation in the DG of young or aged rats
(F2,11=16.61 p=0.41 and p=0.16, respectively) (Table 1). Con-
versely, propofol significantly decreased the number of these
cells in young (Fig. 1A) (EAU, F,1,=>59.75 p=0.034), but not in
aged (Fig. 1B), rats. Propofol specifically altered nascent cells
differentiating into neurons (EAU/DCX, p=0.023), but did not
alter the cells differentiating into astrocytes (EdU/S100B,
p=0.260) (Fig. 1A and B).

2.3.  Propofol altered nascent cells undergoing late
differentiation (IdU") in the DG of young rats

Isoflurane did not alter the number of nascent cells under-
going differentiation in the DG of young or aged rats
(F711=70.18 p=0.423 and p=0.273, respectively) (Table 1).
Conversely, propofol significantly decreased the number of
these same cells in young (IdU, F; 1;=73.02 p=0.034) (Fig. 2A),
but not in aged rats (p=0.20) (Fig. 2B). Propofol specifically
altered nascent cells differentiating into neurons (IdU/DCX,
p=0.047) and astrocytes (IdU/S100 p, p=0.0001) (Fig. 2A and B).



Table 1 - Mean number of labeled cells (mean + SEM) in the dentate gyrus for each developmental and phenotypic marker following isoflurane anesthesia or control.

Comparisons were made between the treatment group and its respective control.

Isoflurane
Ki6e7 EdU 1dUu Cldu
EdU EdU/DCX EAU/S1008 1dUu 1dU/DCX 1dU/S1008 Cldu CldU/NeuN Cldu/s1008
Young Control (N=8) 9524122 496 +84.6 282.7+66.8 21.3+10.7 3090+307.8 2154+245.1 472+24 17404373 326+68.6 281+17.5
Isoflurane (N=8) 814+ 155 464 +106.5 250.7 +£69.3 26.7+5.3 3164+213.1 2028+283.9 426.7+16.7 1590+332.4 368+499.9 308+22.9
Aged Control (N=8) 23740.3 197.3+55.7 10.67+£5.3 21.3+14.1 178+22.7 68+10.4 64+9.2 166+20.5 110+20.2 48+9.24
Isoflurane (N=8) 280+0.3 117.3+45.6 21.34+5.3 26.7+10.7 208443 92+23 74.7+10.7 106+17.9* 41.9 +14.8* 101.3+19.2*

* p<0.05.
** p<0.01.

Table 2 - Mean number of labeled cells (mean + SEM) in the dentate gyrus for each developmental and phenotypic marker following propofol anesthesia or intralipid

(control). Comparisons were made between the treatment group and its respective control.

Propofol
Ki67 EdU 1dU Cldu
EdU EdU/DCX EdU/S1008 1dU 1dU/DCX 1dU/S100p Cldu CldU/NeuN Cldu/s100p

Young Intralipid (N=8) 1372+152 624+42.3 298.7+21.3 21.3+5.3 3470+189.3 1962+213 300+17.4 1932+207.2 374+61.1 246+19.3

Propofol (N=8) 1126 +149 453.3+54.1* 197.3+18.2% 26.7+5.3 2768+299.8* 1386 +254.7* 566.4+18"" 1762+241.8 348+35.1 248+31.3
Aged Intralipid (N=8) 198+60.9 181.3+37.3 10.67 £5.3 26.7+5.3 189+47.72 114.7 +44 64+9.2 152+45.8 80+25.1 64+9.2

Propofol (N=8) 176+61.5 96+27.7 53+5.3 16+9.2 136+39.79 48+11.68 74.7 +10.7 90.7+15.8 40+13 80+16
* p<0.05.
# p<0.01.
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Fig. 1 - Quantification of EAU" cells (right column), EdU*/DCX"* cells (middle column), and EAU*/S100f"cells (left column) in the
DG of young (A) and aged (B) rats after propofol or intralipid infusion (n=8 per group). Propofol significantly decreased the
number of EQU™ cells (*P=0.034) and EdU*/DCX" cells (**P=0.023) in young rats, but did not alter the number of EAU*/
$100p*cells (P=0.260). (C) Confocal image confirming co-localization of EdU (red) and DCX (green) in a cell of the DG indicating

differentiation into a neuronal phenotype.

2.4. Isoflurane altered nascent cells undergoing
maturation (CldU+) in the DG of aged rats

Isoflurane significantly decreased the number of nascent cells
undergoing maturation (CldU+) in the DG of aged (F;,1,1=16.48
p=0.022) (Fig. 3B), but not in young (p=0.384) rats (Fig. 3A). In
addition, isoflurane specifically decreased the number of
maturing neurons (CldU/NeuN, p=0.008), and increased the
number of maturing astrocytes (CldU/S100 B, p=0.033). Con-
versely, propofol did not alter the number or phenotype of
nascent cells undergoing maturation in the DG of young
(p=0.301) or aged (p=0.117) rats (Table 2).

3. Discussion

The experiments reported here showed an agent and age
dependent effect of isoflurane and propofol on nascent cells
in the DG of young and aged rats. Specifically, isoflurane
decreased the number of maturing neurons in the DG born 21
days prior to anesthesia exposure in aged, but not young,
rats, while propofol decreased the number of differentiating
neurons in the DG born 4 and 8 days prior to anesthesia
exposure in young, but not aged, rats (see Fig. 4). We also
confirmed previously published reports showing that young
animals have a significantly greater amount of cell
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Fig. 2 - Quantification of IdU™ cells (right column), IdU*/DCX* cells (middle column), and 1dU*/S100p*cells (left column) in the
DG of young rats (A) and aged rats (B) after propofol or intralipid infusion (n=8 per group). Propofol significantly decreased the
number of IdU" cells (*P=0.034), IdU/DCX" cells (**P=0.047), but increased the number of IdU*/S100f"cells (***P<0.0001) in
the DG of young rats. (C) Confocal imaging confirming co-localization of IdU" (red) and DCX" (green) indicating a neuronal

phenotype.

proliferation in the DG than aged animals (Galvan and Jin,
2007; Kuhn et al., 1996; Lazarov et al., 2010; Seki and Arai,
1995; Shruster et al.,, 2010). In addition, we found that the
number of dividing, Ki-67-positive, cells in the DG of young or
aged rats is not affected immediately after receiving isoflur-
ane or propofol anesthesia, which is consistent with previous
reports showing no effect of anesthesia on stem cell prolif-
eration in the DG immediately after anesthesia (Tung et al,,
2008). While other studies have used multiple S-phase mar-
kers to assess neurogenesis, to our knowledge, the current
report is the first study using timed injections of multiple

thymidine analogs in the same animal to assess the effects of
anesthesia on multiple populations of postnatal hippocampal
neurons at different stages of their development.

3.1.  Control groups

Comparison of inhaled (isoflurane) and intravenous (propo-
fol) anesthetics posses some significant technical challenges.
Induction of anesthesia using isoflurane subjects the animal
to significantly less stress than placing the rat in a restrainer.
Similarly, controls for each anesthetic (room air vs. intralipid)
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Fig. 3 - Quantification of CldU™ cells (right column), CldU*/NeuN™" cells (middle column), and CldU*/S100p*cells (left column) in
the DG of young (A) and aged (B) rats after isoflurane or control exposure (n=8 per group). Isoflurane significantly decreased
the number of CldU* cells (*P=0.02), and the number of CldU/NeuN" cells (**P=0.008), but increased the number of CldU*/
S100p"cells (***P=0.033). (C) Confocal imaging demonstrating co-localization of CldU" (green) and NeuN" (red) indicating a
neuronal phenotype. (D) Confocal imaging demonstrating co-localization of CldU* (red) and S100p*(green) indicating an

astrocytic phenotype.

are, of necessity, treated differently. While direct comparison
of the effects of isoflurane to those of propofol are not
possible, some cautious conclusions can be drawn regarding
the effect of each of these anesthetics on nascent cells in the
DG of young and aged rats.

3.2.  Isoflurane anesthesia specifically affected 21-day-old
neurons and astrocytes in the DG of aged rats

Twenty-one day old neurons in the DG are maturing and
functionally integrating into the hippocampus (Duan et al,
2008; Ming and Song, 2005). Therefore, our findings that
isoflurane anesthesia decreased the number of maturing
neurons in the aged rat brain suggests that impairments of

learning and/or memory reported following isoflurane
anesthesia (Culley et al., 2003, 2004) may be the result of a
decrease in the number of mature hippocampal neurons.
Although, a direct cognitive assessment is not included in our
present study, recent studies published by other groups have
suggested that cognitive impairment occurs in parallel to a
decrease in hippocampal neurogenesis (Stratmann et al,
2009; Zhu et al., 2010).

Isoflurane has been shown to affect neuroprogenitor cells
in a time, dose and age dependent way in vitro (Culley et al,,
2011; Sall et al., 2009; Zhao et al., 2013) and in vivo (Stratmann
et al, 2009; Zhu et al, 2010). For instance, exposure of
neuroprogenitor cells to 2.4%, but not 1.2% isoflurane has
been shown to decrease new cell proliferation in vitro. While,
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Fig. 4 - Cartoon summarizing the effect of isoflurane or propofol anesthesia on nascent cells undergoing development in
young and aged rats. Black arrows in both panels represent the normal development (~21 days) through which nascent cell
differentiate, become immature neurons, migrate and mature into functional neurons that synaptically integrate into the
hippocampal circuitry. The left panel represents the significant differences found after isoflurane anesthesia, which are
specific to maturing neurons and astrocytes. The right panel represents the significant differences found after propofol
anesthesia, which are specific to the immature neurons and astrocytes.

repeated (Zhu et al., 2010) or single (Stratmann et al., 2009)
exposure of postnatal, but not young adult rats, to 1% or more
of isoflurane has been shown to decrease hippocampal new
cell proliferation. Even though, the above mentioned studies
do not directly apply to the two age populations being
considered in our present study, a clear suggestion can be
made about the deleterious effects of some general anes-
thetics on hippocampal new cell proliferation (Erasso et al.,
2012) and neurogenesis at the extremes of ages. A particular
point to take into consideration is that our present study
focuses on the cells born previous to anesthesia, rather than
on the cells born post-anesthesia, possibly accounting for
some contradictory results of other groups that found no
difference in new cell proliferation, differentiation or neuro-
nal maturation in the DG of sixteen month-old rats
(Stratmann et al., 2010).

The decrease in the number of 21-day-old maturing
neurons at the time of isoflurane anesthesia in this study
suggests that this decrease in the number of neurons that are
integrating within the DG may have an effect on cognitive
function. A number of studies examining the role of the DG
on learning and memory formation (Kempermann, 2002a;

Leuner et al., 2006; Nakashiba et al., 2008) suggest that when
neurogenesis in the hippocampus decreases, spatial memory
is impaired (Clelland et al., 2009). Thus, supporting the idea
that maturing DG neurons are important to learning and
memory (Deng et al., 2009; Jessberger et al., 2009) and that
neurogenesis is a required determinant of dentate gyrus-
dependent information processing and memory. Therefore, it
seems reasonable to infer from our results that the isoflurane
specific decrease in the number of maturing neurons in the
DG of aged rats could result in later cognitive impairment.
We also found an increase in the number of 21-day-old
astrocytes with isoflurane anesthesia in aged rats as assessed
by S1008, a calcium binding protein localized and secreted by
astrocytes (Donato, 1999; Donato et al.,, 2013; Schafer and
Heizmann, 1996). In small concentrations, S100f acts as a
growth factor for neurons and glia, but at high concentrations
it may have deleterious effects and may induce apoptosis due
to an increase in proinflammatory cytokines expression
(Rothermundt et al., 2003; Steiner et al., 2007). Accordingly,
5100 has been used as a neurodegenerative biomarker (Cata
et al., 2011; Steiner et al., 2011) and an increase in S100p label
in our present study suggest an activation of astrocytes by a
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promotion of the glial cell fate, proposing a low level of
inflammation in the DG as a result of anesthesia. Recent
laboratory studies have examined anesthetic induced neu-
roinflammation and have shown that clinically relevant
concentrations of isoflurane induce increased levels of the
proinflammatory cytokines (TNF- «, IL-6, and IL-1f) in vitro
and in the brains of mice in vivo (Wu et al., 2010). Moreover,
animal studies have shown that inflammatory cytokines are
involved in cognitive impairment (Wan et al., 2007). Conse-
quently, it is possible that an anesthetic-induced inflamma-
tory response may also contribute to the development of
cognitive impairment (Xie et al., 2009). However, the effects of
anesthesia on astrogliosis in the DG have not been suffi-
ciently investigated, and it is unclear whether increased
astrogliosis plays a role in neuronal loss and/or the cognitive
impairment following anesthesia. Consequently, more stu-
dies assessing the effects of anesthetics on astrogliosis are
needed.

3.3.  Propofol anesthesia specifically affected 4 and 8-day-
old immature neurons and astrocytes in the DG of young rats

Four and eight-day old nascent cells in the DG are differ-
entiating into neurons or astrocytes (Duan et al., 2008; Ming
and Song, 2005). Therefore, our findings that propofol
decreased the number of 4 and 8 day old neurons and
increased the number of astrocytes in the young rat brain;
similar to the previously discussed isoflurane data on the
aged rat brain, suggests not only that this may produce an
effect on learning/memory, but also that an inflammatory
response may be taking place. Although, using animals at
different ages and different anesthetic agents, similar studies
looking at the anesthetic effects on learning and memory
from the behavioral (Jevtovic-Todorovic et al., 2003) and
cellular point of view (Li et al., 2007; Stratmann et al., 2009)
have reported deficits in learning and memory after exposure
to anesthesia.

3.4.  Isoflurane and propofol anesthesia affected nascent
cells undergoing development in an age- and agent-dependent
manner

In this study, isoflurane specifically affected the aged rat
brain, whereas propofol specifically affected the young rat
brain suggesting an age and agent dependent effect. A large
body of clinical and laboratory data indicate that hippocam-
pal function is higher during younger years and gradually
declines with age (Plassman et al., 2008). During young
development, the brain is undergoing different brain process
such as neurogenesis at a higher rate possibly becoming
vulnerable to anesthetic agents. Then, with advancing age,
the proliferative activity of hippocampal neural stem cells
and neuronal differentiation capacity decline, leading to a
dramatic, approximately ten-fold, reduction in neurogenesis
between the age of 2-24 months in a rodent's life (Gage, 2002;
Kuhn et al., 1996; Shruster et al., 2010; van Praag et al., 2005).
Interestingly, at least in some studies, the reduction of
neurogenesis appears to be correlated with age-associated
cognitive deficits (Bizon and Gallagher, 2003; Bizon et al.,
2004; Lazarov et al., 2010). Consequently, the young and aged

brain may be more susceptible to insults that would go
unnoticed at an adult age and may both be more vulnerable
to anesthetics (Culley et al., 2007).

Additionally, the present study suggests that isoflurane
and propofol have different effects, which may be attributed
to different molecular mechanism of intracellular calcium
release of both anesthetics. A recent in vitro study, on human
neuroprogenitor cell exposure to isoflurane demonstrated the
crucial role of differential regulation of intracellular calcium
on the promotion or inhibition of neurogenesis (Zhao et al.,
2013). Zhao et al. particularly found that 24-h exposure to
isoflurane inhibits neuronal cell fate, but stimulates glial cell
fate by excessive intracellular calcium release resulting in
abnormally elevated cytosolic calcium concentrations. Neu-
roprogenitor cells are regulated by GABA and intracellular
calcium transport so that calcium signal triggers the immedi-
ate early genes responsible for stimulating resting cells to re-
enter the cell cycle, promotes DNA synthesis initiation and
contribute to cell cycle completion (Ben-Ari, 2002; Berridge,
1995; Ge et al., 2007; LoTurco et al., 1995). Thus, it seems
reasonable to speculate that isoflurane and propofol may
affect intracellular calcium levels differently consequently
affecting neurogenesis also differently. Nevertheless, more
studies on this mechanism are needed in order to make an
accurate conclusion.

In summary, our experiments showed an age and agent
dependent effect of isoflurane and propofol on nascent cells
in the DG of young and aged rats. Specifically, isoflurane
affected 21-day-old maturing neurons and astrocytes in the
DG of aged rats, whereas propofol affected 4 and 8-day-old
differentiating neurons and astrocytes in the DG of young
rats. These results suggest a possible mechanism for the
impairment of cognitive function reported after exposure to
anesthetics. Clearly, questions regarding the exact mechan-
ism of anesthetic induced neuronal loss and astrocytes
proliferation remain to be elucidated

4, Experimental procedure
4.1.  Animals

Young (3 month-old) and aged (20 month-old) Male Fisher 344
(F344) rats (Harlan, Indianapolis, IN) were used in this study.
Rats were pair-housed in environmentally controlled condi-
tions (12:12 h light: dark cycle at 21+1 °C) and provided food
and water ad lib. This study was conducted in accordance
with the National Institute of Health Guide and Use of
Laboratory Animals, and was approved by the Institutional
Animal Care and Use committee of the University of South
Florida, College of Medicine.

4.2.  Experimental design

Three different populations of proliferating cells in the DG
were labeled with three different thymidine analogs (EdU,
IdU, and CldU) that were intraperitoneally injected into all
animals at 4, 8, and 21 days, respectively, prior to the
anesthetic or control exposure (Fig. 5). The effect of general
anesthesia on differentiation and maturation of these cells
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Fig. 5 - Three different thymidine analogs and one endogenous marker were used to assess the effects of isoflurane

or propofol on each stage of new cell development in the DG of young and aged rats. Rats in all groups (n=8 per group)
were injected 21, 8, and 4 days before control or anesthesia exposure, with CldU, IdU and EdU, respectively.
Immunohistochemically labeled cells in brain sections were co-localized with the following antibodies: DCX (doublecortin),
NeuN or S100p in order to detect immature neurons (EdU/DCX, IdU/DCX), mature neurons (CldU/NeuN) and astrocytes (EAU/
$100p, IdU/ S100p, CldU/ S100p). The endogenous marker Ki67 was used to identified new cell proliferation.

was assessed by quantifying the number of cells co-localized
with labels of neuronal differentiation and maturation with
each of the thymidine analogs injected. In addition, the
number of thymidine-positive cells co-localized with an
astrocyte-specific (S100p) label was assessed. The effect of
anesthesia on cell proliferation was assessed with the endo-
genous cell proliferation marker anti-Ki67 (Scholzen and
Gerdes, 2000), an endogenous nuclear protein that is
expressed in all actively dividing cells (Scholzen and Gerdes,
2000).

4.3.  Preparation and administration of thymidine analogs

Solutions of 5-Chloro-2'-deoxyuridine (CldU; Sigma #C6891 at
17 mg/ml) and 5-lodo-2'-Deoxyuridine (IdU; MP#100357 at 23 mg/
ml) were prepared in sterile saline and administered by intraper-
itoneal (IP) injection (Vega and Peterson, 2005). Because cell
division is a rare event in the subgranular zone of the DG of
aged rats, and because many of the nascent cells do not survive
(Cameron and McKay, 2001; Kempermann, 2002b), we were
concemed that one injection of thymidine analog would not
yield a sufficient number of labeled nascent cells for a mean-
ingful analysis. Therefore, all animals received three IP injections
of CldU and IdU administered at 4-h intervals, as shown in Fig. 1.
Animals in all groups were injected with CldU (42.5 mg/Kg) 21-
days before, and IdU (57.5 mg/Kg) 8-days before anesthesia or
control exposure. A solution of 5-ethynyl-2'-deoxyuridine (EAU;
cat# E10187, Invitrogen, Carlsbad, CA) was prepared at a con-
centration of 60 mg/ml in sterile saline. Animals in all groups
received a single IP injection of EAU (160 mg/Kg) 4 days before
anesthesia or control exposure.

4.4, General anesthesia
4.4.1. Isoflurane

One cohort of rats was randomly assigned to one of four
different groups (n=8/group): young rats and aged rats

exposed to 1.5% isoflurane delivered in 2 L/min O, via nose
cone for 3h, and young rats and aged rats exposed to a
mixture of air and 2L/min O, in their home cage for 3h
(control for isoflurane). Isoflurane (Forane, Ohmeda Caribe,
NJ, USA) was delivered via a standard anesthesia vaporizer.

4.4.2. Propofol

A second cohort of rats was randomly assigned to four different
groups (n==8/group): young rats and aged rats that received
35 mg/kg/h of propofol and young rats and aged rats that
received 10% intralipid (control for propofol). Unanesthetized
rats were placed in a restrainer, and a tail vein catheter attached
to a syringe pump inserted. Propofol (Disoprivan; AstraZeneca) or
10% intralipid (Fresenius Kabi; Sweden), which served as the
vehicle control for propofol (Diprivan Inc, 2004), was continu-
ously administered using a syringe pump (model 11 Plus;
Harvard Apparatus) for 3h via the tail vein catheter. Rats
receiving intralipid remained partially restrained for 3 h.

4.5.  Physiological measurements during anesthesia

Rectal temperature of anesthetized rats was maintained at 37 °C
with a thermostatically controlled heating pad and monitored
using a thermalet-monitoring thermometer (Physitemp instru-
ment Inc, Clifton, NJ, USA). Hemoglobin oxygen saturation (SpOy)
and heart rate (HR) of anesthetized rats were recorded during
anesthesia using the SurgiVet multi parameter monitor (Smiths
medical, Dublin, OH, USA). Diastolic, systolic and mean arterial
pressures of anesthetized rats were measured every 30 min
throughout the anesthesia period by tail cuff using the CODA
non-invasive blood pressure system for rats (CODA2, Kent
Scientific Corporation). Similar physiological measurements were
not made on control animals. All physiological measurements of
anesthetized rats remained within normal physiological limits
(Konze, 2007). Following anesthesia, rats were returned their
cages and monitored until they were fully alert, ambulatory and
showed no signs of discomfort.



10 BRAIN RESEARCH 1530 (2013) I-I2

4.6.  Tissue collection and processing

Twenty-four hours after anesthesia or control exposure, rats
were deeply anesthetized with pentobarbital (50 mg/Kg, IP)
and transcardially perfused with saline followed by ice-cold
4% paraformaldehyde in 0.1 M PBS. Brains were removed,
postfixed in the same fixative solution at 4 °C overnight,
transferred to 20% sucrose in PBS until equilibrated, and
frozen with dry ice. Sagittal cryosections (30 um) through
the entire DG were collected serially.

4.7.  Immunohistochemistry and labeling protocol

For Ki67 immunohistochemistry, sections were pretreated with
1X Saline-Sodium Citrate (SSC) at 80 °C, and endogenous perox-
idase activity quenched with 0.6% H,0, solution in PBS. Sections
were blocked in 2% normal goat serum and 0.25% Triton X-100 in
PBS (PBS-TS), and incubated overnight at 4°C with a rabbit
polyclonal antibody against human Ki67 (NCL-Ki67p; Novocastra
Laboratories/Vision BioSystems, Newcastle upon Tyne, UK) at a
dilution of 1:2000 in PBS-TS. The following day, sections were
washed in PBS, incubated in biotinylated secondary antibody
(goat anti-rabbit IgG rat adsorbed 1:1000; BA-1000 Vector Labora-
tories, Burlingame, CA) in PBS-TS, and washed in PBS before
incubation in avidin-biotin substrate (ABC kit cat no. PK-6100,
Vector Laboratories, Burlingame, CA). Sections were then washed
in PBS, and reacted with 3,3’-diaminobenzidine tetrahydrochlor-
ide (DAB) solution (cat no.1856090, Thermo Scientific,
Rockford, IL).

For CldU and IdU immunohistochemistry, sections were
washed three times for 10 min in PBS before being treated
with 0.2N HCL at 37 °C. Sections were then washed with
borate buffer (pH 8.5), followed by three washes of PBS,
incubated in 5% normal goat serum and 0.25% Triton X-100
in PBS (PBS-TS), and for 24 h at 4 °C free-floating sections
were exposed to rat anti-BrdU (Accurate cat# OBT-0030; clone
BU1/75) at 1:250 for CldU and to mouse anti-BrdU (Becton
Dickinson cat# 347580; clone B44) at 1:500 for IdU (Vega and
Peterson, 2005). All secondary antibodies were used at 1:300
and conjugated to Alexa 594 or Alexa 488 fluorophore.

EdU labeling (Zeng et al., 2010) was performed using Click-
iT™ EdU imaging kit (cat# C10339, Invitrogen, Carlsbad, CA). The
manufacturer's protocol, which is normally intended for use in
cell culture, was adapted for free-floating brain tissue sections.
Sections were washed three times in PBS, twice with 3% bovine
serum albumin (BSA) in PBS, permeabilized with 0.5% Triton X-
100 in PBS, washed twice with 3% BSA in PBS and incubated with
the Click-iT™ reaction cocktail (CuSO4, Alexa Fluor 594 Azide,
and manufacture's reaction buffer additive). Sections were then
washed once more with 3% BSA in PBS, mounted and cover-
slipped with Vectashield mounting medium (cat# H-1000 Vector
Laboratories, Burlingame, CA, USA).

4.8.  Thymidine analog co-localization with histological
markers

The phenotypes of CldU, IdU and EdU labeled cells were
determined using double immunofluorescent staining. Anti-
bodies against doublecortin (DCX), neuronal nuclei (NeuN)
and calcium binding protein S1008 were used to detect

immature neurons, mature neurons and astrocytes, respec-
tively. Following treatment with HCL for thymidine analog
immunohistochemistry, an antibody cocktail of polyclonal
antibody raised against human DCX (1:200, cat# 4604 Cell
Signaling technology, Inc. Danvers, MA, USA) and IdU anti-
body was used to assess whether IdU" cells were immature
neurons. Similarly, a monoclonal antibody against NeuN
(MAB377 Millipore, Billerica, MA, USA) was used at a concen-
tration of 1:500 in a cocktail with the CldU antibody to assess
whether CldU+ cells were mature neurons, and a monoclonal
antibody raised against S100p (ab52642 abcam, Cambridge,
MA, USA) was used at a concentration of 1:3000 in an anti-
body cocktail with CldU or IdU to assess whether CldU+ or
IdU* were astrocytes. For double labeling of EAU/DCX and
EdU/S100p, EdU staining was performed first, followed by
incubation with DCX or S100p.

4.9.  Microscopy and cell counting

A modified unbiased stereology method was used to estimate
the number of positive labeled cells in the DG for each
thymidine analog and ki-67 marker (Mouton, 2002; Schmitz
and Hof, 2005). Twelve sections spaced 360 pm apart through-
out the entire medial-lateral extent of the DG were collected
per animal. Because labeled cells in the DG are a rare event,
all positively labeled cells contained within the DG were
counted in each of the twelve sections per animal. The
number of labeled cells in each DG examined was summed
for individual animals and the sum from each animal multi-
plied by the sections spacing to estimate the total number
positive cells in the DG (Mouton, 2002). Sections were imaged
on an Olympus FV1000 laser-scanning microscope with a 40X
objective (1330X final magnification), and Z stacks were
created at 0.5 pm intervals throughout the 30 pm section with
a guard region of 2 um excluded from top and bottom to
confirm that cells were double labeled.

4.10. Statistical analyses

All data are presented as mean+SEM and analyzed using a
one-way Analysis of variance (ANOVA) followed by a Bonfer-
roni post-hoc test. Probability values less than 0.05 were
considered statistically significant. Statistical comparison of
the data was performed using GraphPad Prism version 5.00
for Mac (GraphPad Software, San Diego California USA, http://
www.graphpad.com).
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