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Abstract 

 

In this paper, we suggest that perception could be modeled by assuming that sensory input is 

generated by a hierarchy of attractors in a dynamic system. We describe a mathematical model 

which exploits the temporal structure of rapid sensory dynamics to track the slower trajectories 

of their underlying causes. This model establishes a proof of concept that slowly changing 

neuronal states can encode the trajectories of faster sensory signals. We link this hierarchical 

account to recent developments in the perception of human action; in particular artificial speech 

recognition. We argue that these hierarchical models of dynamical systems are a plausible 

starting point to develop robust recognition schemes, because they capture critical temporal 

dependencies induced by deep hierarchical structure. We conclude by suggesting that a fruitful 

computational neuroscience approach may emerge from modeling perception as non-

autonomous recognition dynamics enslaved by autonomous hierarchical dynamics in the 

sensorium.  
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1. Introduction 

Although there have been tremendous advances in the development of algorithms and devices 

that can extract meaningful information from their environment, we seem still far away from 

building machines that perceive as robustly and as quickly as our brains. For example, in 

artificial speech recognition, (Deng et al., 2006) summarize current technology with: ‘The 

machine would easily break if the users were to speak in a casual and natural style as if they 

were talking with a friend.’ The situation is similar in machine vision: Although highly 

specialized recognition devices exist; e.g., for face recognition (Zhao et al., 2003; Tan et al., 

2006), there is no generally accepted computational principle for robust perception.  

 

In artificial speech recognition, the conventional approach is to approximate the acoustic 

expression of speech by hidden Markov models (Bilmes, 2006; O'Shaughnessy, 2008). This 

scheme and its variants do not seem, by construction, to capture efficiently the long-range 

temporal and contextual dependencies in speech (O'Shaughnessy, 2008). However, a novel 

approach is emerging that suggests a fundamental computational principle: the idea is to model 

fast acoustic features of speech as the expression of comparatively slow articulator movement 

(Deng et al., 2006; McDermott and Nakamura, 2006; King et al., 2007). These models describe 

speech as a hierarchy of dynamic systems, where the lowest (fastest) level generates auditory 

output. Although this approach, due to its complexity, is still at an early stage of development, 

the premise is that hierarchical dynamics may provide valuable constraints on speech 

recognition. These could make artificial speech recognition systems more robust, in relation to 

conventional approaches, which do not embody hierarchical constraints efficiently. In the visual 

domain, similar hierarchical models have been considered for making inference on dynamic 

human behavior, such as those used in robot-human interaction or surveillance technology 

(Oliver et al., 2004; Yam et al., 2004; Saenko et al., 2005; Moeslund et al., 2006; Robertson and 

Reid, 2006; Kruger et al., 2007). 

 

The question we address in this paper is whether these developments in hierarchical, trajectory-

based perception models point to a computational principle which can be implemented by the 

brain. In (Kiebel et al., 2008) we developed a simple recognition system, based on a specific 

functional form of hierarchical dynamics. We reprise the approach here to show it affords 
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schemes for perception that are both robust to noise and can represent deep hierarchical structure 

in the sensory streams. 

We consider three constraints on perception that the brain has to contend with. The first is that 

our environment and sensations are dynamic processes. This places computational demands on 

the speed of recognition and makes perception, at first glance, more formidable than recognizing 

static scenes or objects. However, a dynamic environment has temporal structure and 

regularities, which can be learned and may be beneficial for robust perception. 

 

The second constraint is that the brain performs perception online, because it has no access to 

future sensory input and cannot store the details of past sensations (we assume here that the brain 

does not have the equivalent of computer memory, which could faithfully store the sensory 

stream for off-line processing). This means that transient sensory information must be used to 

represent the dynamic state of the environment. This constraint renders perception distinct from 

other analyses of time-series data, where timing is not critical and stored data can be analyzed 

off-line. 

 

The third constraint is that we assume that the perception conforms to the free-energy principle 

(FEP); i.e., the perceptual system dynamically minimizes its free-energy and implicitly makes 

inferences about the causes of sensory input (Friston et al., 2006). To minimize its free-energy, 

the agent uses a generative model of how the environment produces sensory input. This 

formulation leads to the question ‘what generative model does the brain use?’ (Dayan et al., 

1995; Lee and Mumford, 2003). Here, we will review and discuss a hierarchical model for 

perception, where higher levels (further away from sensory input) encode the shape of attractors 

which contain faster, lower level dynamics (Kiebel et al., 2008). Previously we have shown in 

simulations, that this hierarchical model enables agents to recognize states causing sensory input, 

at two time scales. In this paper, we focus on the implications of hierarchical attractor models for 

artificial agents, for example speech recognition devices, and real brains. In particular, we 

introduce neurocomputational models of perception that emerge when one describes the 

dynamics of two systems (the environment and the agent) that are coupled via sensory input. 
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2. Theory 

In the following, we summarize a generative model based on a hierarchy of attractors and its 

variational inversion. In (Kiebel et al., 2008), we used simulations to show that the inversion of 

these models shows a range of features which reproduce experimental findings in systems 

neuroscience. Here, we relate this model to research in artificial speech recognition.  

 

2.1.  A model of perceptual inference 

Human speech perception has been construed as the output of a multi-level hierarchical system, 

which must be decoded at different time-scales (Chater and Manning, 2006; Poeppel et al., 

2008). For example, while a spoken sentence might only last for seconds, it also conveys 

information about the speaker’s intent (an important environmental cause) that persists over 

much longer time-scales. To illustrate these points, we will simulate the recognition of birdsongs. 

We use this avian example to illustrate that communication entails (i) embedding information at 

various time-scales into sound-waves at a fast time-scale and (ii) that the recipient must invert a 

hierarchical dynamic model to recover this information. Our objective is to show that 

communication can be implemented using hierarchical models with separation of temporal 

scales. In the following, we describe a two-level system that can generate sonograms of synthetic 

birdsong and serves as a generative model for perception of these songs. 

There is a large body of theoretical and experimental evidence that birdsongs are generated by 

dynamic, nonlinear and hierarchical systems (Vu et al., 1994; Yu and Margoliash, 1996; Sen et 

al., 2001; Glaze and Troyer, 2006). Birdsong contains information that other birds use for 

decoding information about the singing bird. It is unclear which features birds use to extract this 

information; however, whatever these features are, they are embedded in the song, at different 

time-scales. For example, at a long time-scale, another bird might simply register the duration of 

a song, which might belie the bird’s fitness. At short time-scales, the amplitude and frequency 

spectrum of the song might reflect attributes of the bird or imminent danger.  

 

2.2.  A generative birdsong model 

In (Kiebel et al., 2008), we described a system of two coupled Lorenz attractors, whose output 

was used to construct a sonogram and associated sound wave, which sounds like a series of 
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chirps. The key point of this model is that, when generating output, the states of a Lorenz 

attractor at a slower time scale act as control parameters for another Lorenz attractor at a faster 

time scale. The model can be expressed as 
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For both levels, we used 10a =  (the Prandtl number) and 8 3c = . The parameter T controls the 

speed at which the Lorenz attractor evolves; here we used ( )
sT 25.01

=  and  ( )
sT 22

= ; so that the 

dynamics at the second level are an order of magnitude slower than at the first. At the second-

level we used a Rayleigh number; 
( )2

32ν = . We coupled the fast to the slow system by making 

the output of the slow system ( ) ( ) 42

3

1
−= xν  the Rayleigh number of the fast system. The 

Rayleigh number is effectively a control parameter that determines whether the autonomous 

dynamics supported by the attractor are fixed point, quasi-periodic or chaotic (the famous 

butterfly shaped attractor). The sensory signals generated are denoted by y , which comprises the 

second and third state of ( )1
x  (Eq. 1). We will call the vectors 

( )i
x  hidden states, and the scalar 
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( )1
v  the causal state, where superscripts indicate model level and subscripts refer to elements. At 

each level we modeled Gaussian noise on the causes and states (
( )i

w  and ( )i
z ) with a log-

precision (inverse variance), of eight (except for observation noise ( )1z , which was unity). We 

constructed the sonogram (describing the amplitude and frequency of the birdsong) by making 

1y  the amplitude and 2y  the frequency (scaled to cover a spectrum between two and five kHz). 

Acoustic time-series (which can be played) are constructed by an inverse windowed Fourier 

transform. An example of the system’s dynamics and the ensuing sonogram are shown in Fig. 

2A and 2B. The software producing (and playing) these dynamics and the sonogram can be 

downloaded as Matlab 7.7 (Mathworks) code (see software note).  

 

This model can be regarded as a generative or forward model that maps states of the singing bird 

to sensory consequences (i.e., the sonogram). For human listeners, the resulting song sounds like 

a real birdsong. Given a generative model of birdsong, we can generate (different) songs and ask: 

How could a synthetic bird recognize these songs? 

 

The online inversion of this forward model; i.e., the online reconstruction of the hidden and 

causal states, corresponds to perception or mapping from the sonogram to the underlying states 

of the singing bird. In this example, perception involves the online estimation of states at the fast 

and slow level.  Although, at the fast first-level, two of the states (those controlling amplitude 

and frequency of the acoustic input) are accessed easily, the third 
( )1

1x  describes a completely 

hidden trajectory. It is important to estimate this state correctly because it determines the 

dynamics of the others (see Equation 2). Model inversion also allows the listening bird to 

perceive the slowly varying hidden states at the second level, (2)
x , which cannot be heard 

directly but must be inferred from fast sensory input. The second-level hidden states encode the 

high-order structure of the song by specifying the shape of the attractor at the first level. The 

ensuing inversion problem is difficult to solve because the bird can only infer states at both 

levels through the nonlinear, continuous and stochastic dynamics of the Lorenz attractor at the 

first level.  
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2.3.  Perception using Variational inversion 

In (Kiebel et al., 2008), we showed how inversion of this hierarchical model can be implemented 

using the free-energy principle (Friston et al., 2006). This variational online inversion can be 

conceptualized as shown in Fig. 1. The environment, here a synthetic bird, generates output 

using a hierarchical system with coupled slow and fast dynamics (Eqs. 1 and 2). This generates 

sensory input that is recognized by the receiving bird. It does this by passing top-down messages 

(predictions) and bottom-up messages (prediction errors) between the levels of its generative 

model. When top-down messages from the first level predict sensory input, the hidden and causal 

states of the generative model become representations of the corresponding states of the singing 

bird and perceptual inference is complete. For mathematical details, we refer the interested 

reader to (Friston et al., 2008). 

 

 

 

Fig. 1: Birdsong generation and its recognition using variational inversion.  

Environment (left): In this two-level birdsong model, sonograms are generated by the 

autonomous, coupled dynamics of two Lorenz attractors (see Eqs. 1 and 2). The states of the first 
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Lorenz attractor evolve at a slow time scale and act as control parameters for the faster Lorenz 

attractor. Perception system (right): The implicit variational dynamic inversion is a recurrent 

message passing scheme, where top-down predictions are sent from the slow level to the fast 

level, while the fast level receives sensory input and generates bottom-up prediction errors. The 

resulting recognition dynamics are non-autonomous and try to ‘mirror’ the environmental 

dynamics. 

 

 

2.4.  Simulations of birdsong perception 

Here, we describe the result of a single simulation to show that the online inversion can 

successfully recognize songs and track the trajectories of the states at all levels. In (Kiebel et al., 

2008; Friston and Kiebel, 2009) we present more simulations, and discuss and relate them to 

perception, categorization and omission responses in the brain. In Fig. 2A we plot the hidden and 

causal states, which produce sensory output corresponding to synthetic birdsong generation. One 

can see immediately that the two levels have different time-scales due to their different rate 

constants (Eqs. 1 and 2). The resulting sonogram is shown in Fig. 2B.  
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Fig. 2: Data and states, over two seconds, generated by a two-level birdsong model. 

 (A): At the first level, there are two outputs (i.e., sensory data) (left: blue and green solid line) 

and three hidden states of a Lorenz attractor (right: blue, green, and red solid line). The second 

level is also a Lorenz attractor that evolves at a time-scale that is one magnitude slower than the 

first. At the second level, the causal state (left: blue solid line) serves as control parameter 

(Rayleigh number) of the first-level attractor, and is governed by the hidden states at the second 

level (right: blue, green, and red solid line). The red dotted lines (top left) indicate the 

observation error on the output. (B): Sonogram (time-frequency representation) constructed 

from model output. High intensities represent time-frequency locations with greater power. 

 

 

 

The results of online inversion (i.e., song recognition) are shown in Fig. 3. At the first level, the 

uncertainty about the states was small, as indicated by narrow 90% confidence intervals, shown 

in grey. At the second level, the system tracks the hidden and causal states veridically. However, 
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as these variables are inferred through the sensory data, uncertainty about the hidden state 

reaches, intermittently, high values. The uncertainty about the hidden states at the second-level is 

very high, because these variables can only be inferred via the causal state ( )1
v . In particular, 

note the increased period of uncertainty at about 0.3 seconds, at both levels. This uncertainty is 

caused by the hidden state of the first-level switching between the ‘wings’ of the Lorenz 

attractor. At this point, the hidden state at the first level is less identifiable than when it is on the 

outer reaches of a wing. This is because of nonlinearities in the generative model, which mean, at 

this point, the motion of the state is a weaker function of the states per se. This uncertainty (i.e., 

will the state cross to the other wing or not?) is part of inference. 
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Fig.3: Dynamic online inversion of the data presented in Fig. 2.  

Observed data (see Fig. 2) are now shown as black, dotted lines, and the model predictions as 

solid, coloured lines. The 90% confidence interval around the conditional means is shown in 

grey. The prediction error (i.e. difference between observation and model prediction) is 

indicated by red dotted lines.  

 

 

In summary, these results show that the hierarchical model can not only generate birdsong 

dynamics but, using the free-energy principle, it can be used as a generative model to decode 

incoming sensory input with relatively high precision. Critically, at the second level, the 

decoding (listening) bird infers hidden states that evolve slowly over time. This is an important 

result because the values of the hidden states at the second level specify the attractor manifold, 

and therefore the trajectory of states at the first. In other words, one location in state space at the 

higher level specifies a sequence of states at the lower. Moreover, because the states at the 

second level also follow a slowly varying trajectory, the attractor manifold at the first level keeps 

changing slowly over time. It is this slow modulation of the first-level manifold that expresses 

itself in the variations of the fast moving first-level state, which enable the perception to track 

hidden trajectories at the second level.  

 

A key aspect of this model rests on the nonlinearity of the generative model. This is because the 

only way for slowly varying causes to be expressed as faster consequences is through nonlinear 

mechanisms (Eq. 2). It is this nonlinearity that allows high-level states to act as control 

parameters to reconfigure the motion of faster low-level states. If the equations of motion at each 

level were linear in the states, each level would simply convolve its supraordinate inputs with an 

impulse response function. This precludes the induction of faster dynamics because linear 

convolutions can only suppress various frequencies. However, the environment is nonlinear, 

where long-term causes may disclose themselves through their influence on the dynamics of 

other systems. To predict the ensuing environmental trajectories accurately, top-down effects in 

the agent’s generative model must be nonlinear too. We suggest that this principle of separation 

of time scales in a nonlinear hierarchy is not only used in avian but also in human 

communication, because both birdsong and speech share the common feature that information is 
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transmitted via rapidly modulated sound waves. In the following, we will review evidence which 

suggests that human speech can be appropriately modeled and recognized by a hierarchy of 

attractors. 

 

2.5.  Artificial speech recognition 

How are our simulations related to artificial perception systems that solve ‘real-world’ 

recognition tasks? Here, we focus on artificial speech recognition (ASR) but note that there are 

similar modeling initiatives in other areas of artificial perception; e.g., vision (Oliver et al., 2004; 

Yam et al., 2004; Moeslund et al., 2006).  

 

An intuitive approach to speech recognition is to consider speech as a sequence of phonemes; 

i.e., speech sounds are like ‘beads on a string’, which form syllables, words and sentences 

(Ostendorf, 1999). The idea here is that when one knows the ‘single beads’, one just needs to 

read out the sentence. This intuition leads naturally to models that treat speech as a sequence of 

states, which can be recognized, given the auditory input, using hidden Markov models (Bilmes, 

2006; O'Shaughnessy, 2008). However, speech does not seem to work like this: Speech exhibits 

all kinds of contextual effects, at various time-scales, leading to cross-temporal dependencies. 

For example, co-articulation induces a dependence of the acoustic expression of speech-sounds 

on the sound’s temporal neighbors (Browman and Goldstein, 1992). These temporal 

dependencies introduce a tremendous amount of variations in the ‘single beads’. In conventional 

hidden Markov models these can be modeled by increasing the number of states and parameters, 

which can lead to serious model identification issues: Various reviews discuss why the hidden 

Markov model and its extensions, as conventionally used in ASR, are probably not appropriate to 

model and recognize speech with human-like performance (Bilmes, 2006; King et al., 2007; 

O'Shaughnessy, 2008).  

 

Although ignored as a main-stream modeling assumption in the ASR field, the acoustic stream is 

the consequence of hidden state-space trajectories: the vocal tract (VT) dynamics, i.e. tongue, 

mouth and lips and other VT components, generate articulatory gestures, which are understood 

to be the basic elements of speech (Browman and Goldstein, 1997; Liberman and Whalen, 2000; 

Deng et al., 2006; McDermott and Nakamura, 2006). A novel modeling approach, which seems 
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to be emerging from the ASR field, focuses on two crucial points: First, the specification of a 

generative hierarchical speech model for recognition, which models VT dynamics as hidden 

trajectories. Second, these VT dynamics form speech ‘gestures’, whose perception is the goal of 

artificial speech recognition. There are many interesting variants of this approach, e.g. (Rose et 

al., 1996; Saenko et al., 2005; Deng et al., 2006; McDermott and Nakamura, 2006; Deng et al., 

2007; King et al., 2007; Livescu et al., 2007; Hofe and Moore, 2008). 

 

Such hierarchical generative models place fast acoustics at the lowest level, whereas (various 

levels of) VT dynamics causing the acoustics through top-down influences (Deng et al., 2006). 

Importantly, VT dynamics tend to be slower than the changes in acoustics they cause and the 

function which maps VT to acoustic dynamics can be highly nonlinear. Naturally, development 

of these generative models is slow because of their complexity and the ongoing development of 

novel schemes for inverting dynamic nonlinear hierarchical models. It may be that recent 

developments (Friston et al., 2008) in the inversion of these models, particularly in a 

neurobiological setting (Friston, 2008a), may play a useful role in the recognition of generative 

speech models used in ASR. 

 

 

3. Discussion 

 

We have suggested that a simple model of birdsong perception, motivated by computational 

neuroscience and ongoing developments in artificial speech recognition share a critical feature: 

Generative models for human and avian communication seem to be based on a hierarchy of 

dynamical systems, where high levels display slow variations and provide contextual guidance 

for lower faster levels. The principle of hierarchical inference, using appropriate inversion 

schemes, with separation of time-scales, could be an inherent part of the computations that 

underlie successful artificial recognition of human action and behavior.  

 

A hierarchical inference has several implications for cortical structure as well as for artificial and 

human perception. For cortical structure, these are: 
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• Cortical areas are organized hierarchically (Felleman and Van Essen, 1991; Fuster, 

2004). 

• Macroscopic neuroanatomy recapitulates hierarchical separation of time-scales; see 

(Kiebel et al., 2008) for a discussion of the evidence that the cortex is organized as an 

anatomic-temporal hierarchy. 

• Extrinsic forward connections convey prediction error (from superficial pyramidal cells) 

and backward connections mediate predictions, based on hidden and causal states (from 

deep pyramidal cells) (Mumford, 1992; Sherman and Guillery, 1998; Friston, 2005). 

 

In the following we discuss the implications for artificial and human perception. 

 

3.1.  A computational principle for perception 

The conjecture that the brain inverts hierarchical generative models may lead to a deeper 

understanding of the computational principles behind perception. As described above, a 

hierarchical approach has also been adopted in the engineering and artificial perception literature 

(Yam et al., 2004; Deng et al., 2006; Moeslund et al., 2006; Kim et al., 2008). It is worth noting 

that these developments seem to have made minimal reference to neuroscience but were driven 

by the insight that conventional non-hierarchical models do not capture the deep hierarchical 

structure of sensory data (Oliver et al., 2004; Bilmes, 2006; Deng et al., 2006).  

 

What are the advantages and disadvantages of using hierarchical models as the basis of artificial 

perception? A clear disadvantage is that, for real-world applications like speech recognition, the 

dynamics of movements may take complicated forms, at various time scales. It is therefore not 

surprising that the best working solutions for artificial speech recognition rather rely on learning 

large numbers of free parameters in less constrained models (McDermott and Nakamura, 2006). 

In addition, the inversion of nonlinear stochastic hierarchical dynamic models is a non-trivial 

challenge (Judd and Smith, 2004; Budhiraja et al., 2007; Friston et al., 2008). However, in 

principle, hierarchical dynamics can be parameterized by rather low-dimensional systems, in 

comparison to the high-dimensional sensory stream. This means that relatively few parameters 

are required to track acoustic trajectories. This might make dynamic speech identifiable, leading 

to robust perception schemes. Interestingly, for speech, prior research has already investigated 
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the dynamics of articulation but is embraced with reluctance by the artificial speech recognition 

field (McDermott and Nakamura, 2006).  

 

A hierarchical model may also be useful in robust perception of motor behavior, because human 

movements seem to be more invariant than the sensory features which they cause (Todorov and 

Jordan, 2002). This means that movements, which are on a comparatively slower time-scale than 

their sensory expressions, may be expressed naturally at a higher level in hierarchical models.  

This is consistent with neuroscience findings that higher cortical levels show invariance over 

greater time scales than lower levels (Giese and Poggio, 2003; Koechlin and Jubault, 2006; 

Hasson et al., 2008). Furthermore, the relative slowness of human movements, in comparison to 

consequent variations in the sensory stream, may also enable the prediction of fast sensory 

features, increasing the robustness of perception (Yam et al., 2004; King et al., 2007). We have 

demonstrated this by showing that a hierarchical scheme can out-perform a non-hierarchical 

scheme, see Fig. 5 in (Kiebel et al., 2008). 

 

In addition, speech trajectories could be modelled at time-scales beyond single speech-sounds 

and syllables, e.g. covering words and sentences. At this level, long-range hierarchical and cross-

temporal dependencies are  subject of active research in computational linguistics and natural 

language (Smits, 2001; Bengio et al., 2003; Huyck, 2009). The inversion of models with 

temporal hierarchies may provide a framework for computational models of language 

processing. For example, they are in a position to explain how uncertainty about the meaning of 

the early part of a sentence is resolved on hearing the end: i.e., increases in conditional certainty 

about hidden states, based on current sensory input confirms their predictions. In other words, 

the long-range or deep temporal dependencies in speech might lend themselves to hierarchical 

temporal modelling. The resulting inference, using serial speech input, may appear to be non-

serial because decisive evidence for hidden states at different levels arrives at different times. To 

our knowledge, a fully dynamical hierarchical scheme that maps from sound waves to the 

semantics is still beyond the current abilities of artificial speech recognition (Deng et al., 2006). 
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3.2. Simple network operations 

Although the variational inversion of hierarchical dynamic models might appear too unwieldy 

for a simple theory of perception, the actual operations needed to implement recognition 

dynamics are rather simple (Friston et al., 2008). By ‘simple’ we mean that all operations are 

instantaneous and just involve message-passing among neurons in a network and associative 

plasticity of their connections. This renders the approach neurobiologically plausible. The 

message-passing scheme is not the only possible implementation, there are others, each with 

their own approximations and simplifications to compute the free energy (Daunizeau et al., 

2009). Irrespective of the optimization scheme used, the requisite update equations are 

determined by the generative model, which is specified by the likelihood and priors. This means 

that the identification of the brain’s generative model of the environment is the key to 

understanding perception (Rao and Ballard, 1999; Yuille and Kersten, 2006; Friston, 2008a). 

 

The variational inversion using generative models is just a recipe to construct a system of 

differential equations, which recognize sensory input, i.e., optimise a free-energy bound on the 

log evidence for some model. This means the scheme shares many formal similarities with 

dynamical systems used in computational neuroscience to describe neuronal systems 

(Rabinovich et al., 2006). As noted by one of our reviewers, it may be that such schemes have 

evolved to exploit natural or universal phenomena that appear when dynamical systems are 

coupled (Breakspear and Stam, 2005). Indeed, in an evolutionary setting, the emergence of 

efficient coupled dynamical systems that optimise free-energy may exploit these phenomena. For 

example, coupled nonlinear systems naturally evolve towards a synchronous state, even with 

relatively weak coupling. It would be very interesting if these synchronised states could be 

associated with optimised free-energy states that are mandated by perception in particular and 

the free-energy principle in general. 

 

In short, the variational approach entails finding a dynamic system (the generative model), which 

describes the generation of sensory input. Variational learning principles are then applied to 

derive differential equations, which decode hidden states from sensory input. The use of generic 

inversion systems as proposed in (Friston et al., 2008) enables one to focus on the first challenge, 

which may be informed by the study of coupled dynamical systems, in a more general setting.   
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3.3.  Coupling between time-scales 

The variational inversion of temporal hierarchies describes how fast sensory input can influence 

inferred states at slow time-scales. There are recent studies that suggest this sort of coupling may 

be a generic feature of coupled dynamical systems: Fujimoto and Kaneko describe how to 

exploit a bifurcation cascade to couple slow high-level states to fast low-level dynamics. 

Crucially, they find that coupling is seen only in a narrow regime of time-scale ratios, around 

two to three (Fujimoto and Kaneko, 2003b, a). As shown in (Kiebel et al., 2008), dynamical 

systems based on variational inversion schemes operate in a broader regime: one can construct 

systems where fast dynamics influence slow dynamics at much higher time-scale ratios. In the 

present work, we use a ratio of eight, which is beyond the limit identified by Fujimoto and 

Kaneko (Fujimoto and Kaneko, 2003b). However, dynamics based on variational inversion have 

a natural lower limit on the time-scale ratio: When the ratio approaches one, the changes in the 

manifold of the fast system, caused by the slow system, evolve nearly as fast as the states 

themselves. This means that the changes in the manifold cannot be separated from the dynamics 

of the states. This suggests that robust inversion of temporal hierarchies rests on a separation of 

temporal scales, which may impose a lower bound on the relative time-scales. 

 

Although we have not emphasized it in this paper, the fact that one can formulate the inversion 

of dynamic models with deep or hierarchical temporal structure as a dynamical system rests on 

recent technical advances in Bayesian filtering (Friston, 2008b; Friston et al., 2008). In brief, 

these advances use generalised coordinates of motion to represent the trajectories of hidden 

states. Generalised coordinates cover position, velocity acceleration etc. Although this increases 

the number of implicit hidden states it greatly simplifies inversion, in comparison with 

conventional schemes like particle and extended Kalman filtering. This simplification reduces 

filtering (i.e., inversion) to a gradient descent, which can be implemented in a neurobiologically 

plausible fashion. The use of generalised coordinates is formally similar to temporal embedding 

in the characterisation of dynamical systems: Taken’s theorem (Takens, 1981) states that it is 

possible to embed (i.e. geometrically represent) the structure of a vector-field in a higher 

dimensional space. This means that one can reconstruct the structure of the manifold, on which 
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dynamics unfold, by using a Taylor expansion of the vector-field. This is very close to the idea 

of projecting the system into generalized coordinates. In essence, this projection allows the 

observer to encode the structure of the flow-field at each point in time. 

 

3.4. A general mechanism for perception and action in the brain? 

In a recent paper, we reviewed some compelling experimental evidence for temporal hierarchies 

in the brain. We argued that these hierarchies may reflect a general form of generative models 

that the brain uses to recognize causes beyond the temporal support of elemental percepts (e.g., 

formants in audition and biological motion in vision (Kiebel et al., 2008)). We have shown 

previously that the inversion of these generative models lead to robust and accurate inferences 

about the causes of sensory input. Hierarchical models are approximations to the environmental 

processes that generate sensory data (Todorov et al., 2005); so one might ask why evolution 

selected temporal hierarchies? Intuitively, there is something fundamentally correct about 

generative models based on temporal hierarchies; in the sense that the content of our sensorium 

changes more quickly than its context. However, for communication and biological motion there 

may be additional reasons to suppose temporal hierarchies afford just the right model; this is 

because our brains may use the same architecture to generate and recognise movements (Kilner 

et al., 2007). This means that, during co-evolution with our conspecifics, temporal hierarchies 

may have been subject to selective pressure, precisely because they enable generation and 

recognition of communicative stimuli over multiple time-scales (i.e., with deep temporal 

structure) (von Kriegstein et al., 2008; Rauschecker and Scott, 2009). 

 

3.5. Perception mirrors the environment 

The role of non-autonomous recognition dynamics is to mirror or track autonomous dynamics in 

the environment. If this tracking is successful, the recognition system ‘inherits’ the dynamics of 

the environment and can predict its sensory products accurately. This inheritance is lost when the 

sensory input becomes surprising, i.e. is not predicted by perception. In this case, the recognition 

system uses prediction error to change the predictions and make sensory input unsurprising 

again. This heuristic explains how the agent’s dynamics manage to switch rapidly between 

different attractor regimes. This switching, e.g. see Fig. 3 in (Kiebel et al., 2008), is caused by 
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the interplay between the system’s attempt to minimize surprise (which is bounded by free-

energy) and (surprising) sensory input. 

 

3.6.   Identification of the environmental model 

Explicit modeling of environmental dynamics and their inversion may be a useful approach to 

model perception for several reasons: most current research in computational neuroscience 

focuses on modeling a single neuronal system, which generates neuronal dynamics just as the 

brain does. This ‘single system’ approach, which does not model the environmental dynamics 

explicitly, is very useful for identifying neuronal mechanisms and relating them to applied 

sensory input and neuronal or behavioral observations (Rabinovich et al., 2006). However, this 

approach does not address how these neuronal mechanisms (and not others) come about in the 

first place.  
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Fig. 4: Modeling neuronal dynamics caused by environmental dynamics.  

Brain system (left): In this dual-system model, neuronal dynamics (bottom) correspond to 

inversion or recognition dynamics (middle) induced by environmental dynamics (top). We 

assume that the environmental and neuronal dynamics can be partially observed, while the 

recognition dynamics are hidden. Simulated system (right): The full generative model of 

neuronal dynamics; starting with environmental dynamics, which specify recognition dynamics, 

which predict neuronal dynamics. 

 

 

An alternative approach may be to model neuronal dynamics ‘from scratch’: Such a full forward 

model would comprise three components: (i) A model of the environment with autonomous 

dynamics, which, using the free-energy principle, prescribes (ii) non-autonomous recognition 

dynamics, which are implemented by (iii) neuronal dynamics (Fig. 4, left panel). In other words, 

appropriate models of the environment may be requisite to make strong predictions about 

observed neuronal dynamics. Given the complexity and detail of neuronal dynamics, one might 

argue that the identification of appropriate environmental models is a daunting task. However, 

the ‘dual-system’ approach of modeling both environment and the brain would essentially 

rephrase the question ‘How does the brain work?’ to ‘What is a good model of the environment 

that discloses how the brain works?’ see e.g. (Chiel and Beer, 1997; Proekt et al., 2008). This 

approach has the advantage that environmental models, which cannot be inverted, disqualify 

themselves and are unlikely to be used as generative models by the brain. For example, in 

artificial speech recognition, the conventional hidden Markov model has been found difficult to 

invert for casual speech. Moreover, this model is also a poor generative model of speech, i.e. 

speech generated by this model yields barely intelligible speech (McDermott and Nakamura, 

2006). Given that one can identify appropriate models of the environment; e.g., for audiovisual 

speech, the recognition performance can be directly compared to human performance. 

Furthermore, one could use established model selection schemes to evaluate environmental 

models in the context of their neuronal inversion (Friston et al., 2008). This dual-system 

modeling approach may also allow one to ask whether simulated recognition produces the same 

kind of predictions and prediction errors as humans, e.g. when exposed to sensory input that 

induces the McGurk effect (Cosker et al., 2005). Such experiments would enable us to explain 
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the McGurk effect and similar perception phenomena in a causal fashion, as the consequence of 

our brains’ generative environmental model. In addition, one may be able to couple simulated 

recognition dynamics with models of neuronal dynamics and relate these to observed neuronal 

dynamics (Fig. 4, right). This would enable us to make predictions about observed neuronal 

responses under specific assumptions about the generative model used by the brain, and how 

neuronal dynamics implement recognition.  

 

The value of this dual-system approach is that neuroscience and artificial perception have a 

common interest in these models (Scharenborg, 2007). Not only would such an integrative 

approach provide a constructive account of brain function, at multiple levels of description, but 

also enable machines to do real-world tasks, see e.g. (Rucci et al., 2007) for a spatial localization 

example at the interface between artificial perception, robotics and neuroscience. 

 

4. Conclusions 

We have demonstrated that the recognition of environmental causes from sensory input can be 

modeled as the inversion of dynamic, nonlinear, hierarchical, stochastic models. We have 

discussed relevant developments in artificial perception, which suggest that perception models 

the environment as a hierarchy of autonomous systems, evolving at various time-scales, to 

generate sensory input.  In this view, the computational principles of perception may be accessed 

by considering variational inversion of these models. 
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Software note 

All procedures described in this note have been implemented as Matlab (MathWorks) code. The 

source code is freely available in the Dynamic Expectation Maximization (DEM) toolbox of the 

Statistical Parametric Mapping package (SPM8) at http://www.fil.ion.ucl.ac.uk/spm/. 
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