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The three new pathways leading to Alzheimer’s disease

Genome-wide association studies (GWAS) promise a sig-
nificant impact on the understanding of late-onset Alzhe-
imer’s disease (LOAD) as the genetic components have
been estimated to account for 60–80% of the disease. The
recent publication of results from large GWAS suggests
that LOAD is now one of the best-understood complex
disorders. Four recent large LOAD GWAS have resulted
in the identification of nine novel loci. These genes are
CLU – clusterin, PICALM – phosphatidylinositol-binding
clathrin assembly protein, CR1 – complement receptor 1,
BIN1 – bridging integrator 1, ABCA7 – ATP-binding

cassette transporter, MS4A cluster – membrane-spanning
4-domains subfamily A, CD2AP – CD2-associated protein,
CD33 – sialic acid-binding immunoglobulin-like lectin
and EPHA1 – ephrin receptor A1. Collectively, these genes
now explain around 50% of LOAD genetics and map on to
three new pathways linked to immune system function,
cholesterol metabolism and synaptic cell membrane pro-
cesses. These three new pathways are not strongly linked
to the amyloid hypothesis that has driven so much recent
thinking and open up avenues for intensive research with
regard to the potential for therapeutic intervention.
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The search for genetic contributions to

late-onset Alzheimer’s disease

The advent of genome-wide association studies (GWAS)
has undoubtedly increased our understanding of the role
played by common variation in complex diseases. This
can be no better illustrated than by noting the impact
such studies have had on our understanding of late-onset
Alzheimer’s disease (LOAD). In contrast to early-onset
familial Alzheimer’s disease (which accounts for approxi-
mately 2% of AD cases) finding the genetic components of
LOAD (which have been estimated to account for 60–80%
of the disease) has proven to be a much more challenging
task [1].

The amyloid hypothesis has been a central driver in AD
research for 20 years and proposes that Ab plays a pivotal
role in the neurodegenerative process as a result of an
imbalance between neurotoxic Ab generation and clear-
ance [2]. One of the classical pathological hallmarks of
AD, the amyloid plaque, is composed of aggregated Ab.
Mutations in the three genes which cause early-onset
familial Alzheimer’s disease – amyloid precursor protein
(APP) and the presenilins (PSEN1 and PSEN2) – over-
whelmingly support the role of amyloid metabolism as
the common pathway in this Mendelian form of the dis-
order [3]. APP harbours within its sequence the Ab
peptide, which is liberated following cleavage by b-
and g-secretases, and the PSENs are components of the
g-secretase complex responsible for proteolytic cleavage
of APP. The vast majority, if not all, of the familial
Alzheimer’s disease causing mutations result in altered
processing of APP. Consequently, these observations
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informed the search for genetic factors in LOAD with the
belief that the late-onset form of the disease must also
have the processing of APP at its core.

The discovery of the readily detectable risk for LOAD
associated with the e4 allele of the APOE gene [4] (one
allele gives an increased risk of AD of 2.5-fold, two alleles
approximately 16-fold) together with the observation that
APOE could be involved with Ab transport added further
support for the amyloid hypothesis. However, since this
observation over 15 years ago little progress was made in
uncovering further replicable genetic associations despite
intensive worldwide effort. With the recent publication of
results from large GWAS, the situation has changed dra-
matically; indeed, to such an extent that it could be argued
that LOAD is now one of the best-understood complex
disorders.

The new genetic associations with late-onset

Alzheimer’s disease

Apart from the well-known association with APOE, what
are the new genetic associations? Four large LOAD GWAS
have been published in the last 18 months and have
resulted in the identification of nine novel loci associated
with the disorder [5–9]. These genes are CLU – clusterin,
PICALM – phosphatidylinositol-binding clathrin assembly
protein, CR1 – complement receptor 1, BIN1 – bridging
integrator 1, ABCA7 – ATP-binding cassette transporter,
MS4A cluster – membrane-spanning 4-domains subfam-
ily A, CD2AP – CD2-associated protein, CD33 – sialic acid-
binding immunoglobulin-like lectin and EPHA1 – ephrin
receptor A1. Collectively, if the relative risk/population-
attributable risk for these new genes is totalled, we find
that they explain around 50% of LOAD genetics [10]. On
the plus side, this means that we now understand a con-
siderable component of LOAD genetics and have made
remarkable progress; on the negative side, it means that
50% is still remaining to be found – the so-called ‘missing
heritability’ that GWAS has failed to identify. Larger GWAS
and/or extended meta-analysis may well reveal additional
genes but the current belief is that some of the hidden
effects are due to rare variation (which GWAS are not
designed to detect) or possibly due to epistatic (gene–gene)
interactions which again could well remain undetected
using conventional GWAS approaches. These are by no
means the only explanations; other considerations such
as copy number variation, epigenetic variation or non-
coding RNA processing may play additional roles.

Pathways leading to Alzheimer’s disease that

do not link to amyloid

Having found new genes associated with LOAD, what
impact are these likely to have? Perhaps, one of the most
exciting things to come out of these findings so far is
the belief that these genes have identified new pathways
involved in the disease process which do not directly link
to amyloid [3,8,11]. This raises the possibility that the
impact amyloid plays in LOAD might be less than we had
previously thought. These pathways highlight additional
mechanisms associated with the disease process and are
legitimate potential therapeutic targets. If an in-depth
look is taken at the genes identified it is possible to see
something quite remarkable – all nine new genes map
onto three pathways (with considerable overlap shown by
some genes). The new pathways implicated in LOAD
(Figure 1) together with the genes that track to these
pathways are as follows:
• immune system function (both innate and adaptive) –

CLU, CR1, ABCA7, MS4A cluster, CD33 and EPHA1;
• cholesterol metabolism – APOE, CLU and ABCA7; and
• synaptic dysfunction and cell membrane processes –

PICALM, BIN1, CD33, CD2AP and EPHA1.
Each of these pathways makes sense from a biological

perspective with some previous supporting scientific and
anecdotal observations. While APOE, CLU and ABCA7 do
play a role in Ab metabolism, a mechanism that clearly
plays a central role in familial Alzheimer’s disease,
perhaps as a result of finding these new susceptibility
factors it is possible to consider that Ab may have a lesser
role in LOAD pathogenesis. It can now be argued that the
evidence for the involvement of amyloid in the late-onset
form of the disease (LOAD) is diminishing. However, it is
still feasible that toxic Ab may well have a modulatory
effect on these new pathways (Figure 1).

Why have genome-wide association studies

given the answers?

So, why did GWAS deliver when the plethora of candidate
gene studies attempted previously did not? One of the
problems of candidate gene studies is that the gene of
study is selected using a priori biochemical and/or genetic
data implicating that gene. Studying genes on a one-by-
one basis is an expensive and labour-intensive process.
Genetic variation throughout the entire human genome,
that is, all genes, can be assessed using single-nucleotide
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polymorphisms (SNPs). By exploiting microarray tech-
nology, GWAS has permitted hundreds of thousands of
SNPs to be interrogated in a single experiment. Determin-
ing if there are differences in SNP frequencies between
disease and control cohorts permits identification of loci
associated with the disease. Multiple testing issues in
GWAS are a valid concern because so many SNPs are
being assayed at once. For this reason, more stringent
criteria are applied and P-values of between 5 ¥ 10-7 and
5 ¥ 10-8 are generally accepted as being genome-wide
significant [1]. It has been possible to conduct GWAS
because the HapMap project provided the genetic com-
munity with a catalogue of common genetic variation
(SNPs with minor allele frequency �5%) distributed
throughout the genome. This information then enabled

the generation of commercial ‘SNP chips’ that could be
assayed in a high throughput manner. Finally, the avail-
ability of large collections of samples (in the thousands if
not tens of thousands) permitted adequately powered
studies to be undertaken. Herein lies a fundamental
premise of GWAS – these studies are very good at detect-
ing association of common variants with disease but the
power to detect an effect comes from the ability to analyse
large-sample collections.

Late-onset Alzheimer’s disease genetic research has at
long last started to ‘bear fruit’. These new pathways
open up avenues for intensive research with regard to the
potential for therapeutic intervention, perhaps to multiple
targets in the more elderly population. While AD diagnos-
tics and the development of disease-modifying drugs still
lag behind the recent advances made in genetics, the
sincere hope of all is that these new findings will prompt
renewed vigour for their search and that these endeavours
will also make significant advances in the not-too-distant
future.
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