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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by 

insidious cognitive decline and memory dysfunction. Synapse loss is the best 

pathological correlate of cognitive decline in AD and mounting evidence suggests that 

AD is primarily a disease of synaptic dysfunction. Soluble oligomeric forms of amyloid 

beta (Aβ), the peptide that aggregates to form senile plaques in the brain of AD patients, 

have been shown to be toxic to neuronal synapses both in vitro and in vivo. Aβ 

oligomers inhibit long-term potentiation (LTP) and facilitate long-term depression (LTD), 

electrophysiological correlates of memory formation. Furthermore, oligomeric Aβ has 

also been shown to induce synapse loss and cognitive impairment in animals. The 

molecular underpinnings of these observations are now being elucidated, and may 

provide clear therapeutic targets for effectively treating the disease. Here, we review 

recent findings concerning AD pathogenesis with a particular focus on how Aβ impacts 

synapses. 
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Background   

First described by the German neuropathologist Alois Alzheimer in 1906, Alzheimer’s 

disease (AD) is a progressive neurodegenerative disease characterized by insidious 

cognitive decline and loss of memory function[1, 2]. Over 35 million people are afflicted 

with AD worldwide, 5.5 million of them in the United States alone, and these numbers 

are expected to quadruple by 2050[3]. AD is the sixth leading cause of death in the 

United States, and remains one of the only causes of death that increased by as much 

as 66% over the last decade[4]. No disease-modifying drug has been developed for 

treating AD, making it one of the most pressing public health problems in the world 

today. Tremendous progress has been made over the last few decades in understanding 

the underlying biology of the disease. Here we review pertinent research findings 

concerning AD pathogenesis with a particular focus on how neuronal synapses are 

impacted in disease progression. Understanding the molecular underpinnings of AD 

pathogenesis may aid in developing effective therapeutic approaches for combating it. 

 

Neuropathology and Pathogenesis of Alzheimer’s disease 

AD is characterized pathologically by cortical atrophy, neuronal cell death, 

neuroinflammation, synapse loss, and the accumulation of two definitive pathological 

lesions: neurofibrillary tangles and senile plaques[5].  Neurofibrillary tangles (NFTs) 

deposit within neurons and are composed of hyperphosphoryated tau protein whereas 

senile plaques occur in the extracellular space and are made up largely of the 38-43 

amino acid peptide amyloid-beta (Aβ)[6]. Aβ is believed to be a key trigger of AD 

pathogenesis, one that is upstream of NFTs. It is formed by the sequential cleavage of 

the amyloid precursor protein (APP) by β- and γ-secretase, after which Aβ is released 
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into the extracellular space[6]. There, Aβ can assume a variety of conformational states 

ranging from monomers to soluble oligomers, protofibrils, and fibrils, which aggregate to 

form plaques[7-9].  

Several lines of evidence support the hypothesis that alterations in amyloid 

processing can lead to AD. First, APP is located on chromosome 21, and Down 

syndrome patients who have trisomy of chromosome 21 invariably develop AD[10]. 

Further, individuals with trisomy 21 with a chromosome 21q break such that APP 

diploidy occurs in the setting of trisomy 21 do not develop clinical or neuropathological 

AD[11]. Conversely, a small cohort of patients who inherited an extra copy of APP due to 

microduplication of small portions of chromosome 21q containing the APP locus 

developed AD-like dementia with plaque deposition[12].  

Second, most genetic mutations associated with rare familial early onset AD lead 

to increased production of Aβ or an increase in Aβ42-to-Aβ40 ratio, which increases the 

propensity for Aβ aggregation[13]. Mutations leading to early onset familial AD have 

been found in the APP gene on chromosome 21q[14], in the presenilin 1 gene (PSEN 1) 

on chromosome 14q, and the presenilin 2 gene (PSEN 2, a homolog of PSEN 1) located 

on chromosome 1q[13]. Presinilin forms the catalytic site of γ-secretase, which is one of 

the enzymes involved in the cleavage of APP to form Aβ[15-17]. All of these mutations 

influence Aβ metabolism and production[18, 19].   

 Third, Aβ has been shown to be toxic to neurons in vitro and in vivo[6]. Injecting 

synthetic or naturally secreted Aβ, at concentrations akin to those seen in the brains of 

AD patients, into the brains of rodents induces behavioral deficits and tau 

hyperphosphorylation[5].   
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Fourth, transgenic mouse models overexpressing human APP and/or PSEN 

genes with known familial early onset AD mutations develop amyloid plaque deposition 

and some of the morphological changes of AD (e.g. synapses loss)[20-22]. While most 

of these transgenic mice do not develop the typical neuronal cell loss observed in AD, 

they manifest age-dependent memory impairments and cognitive deficits[20-22].   

 Finally, immunization of AD transgenic mice with Aβ or anti-Aβ antibodies reduces 

amyloid plaque deposition, clears existing plaques, and ameliorates cognitive deficits in 

transgenic mice[23, 24], indicating that removal of Aβ is beneficial to the brain.  

 Taken together, these findings suggest that Aβ is an essential element in the 

pathogenesis of AD. The mechanistic link between Aβ and neurodegeneration, however, 

remains elusive.  Mounting evidence suggests that AD is primarily a disease of synaptic 

dysfunction[25] and it is becoming clear that Aβ, particularly in oligomeric form, is toxic to 

synapses.  There is therefore a growing interest in understanding how oligomeric Aβ 

induces synaptic dysfunction in AD.  

 

Aββββ-mediated synaptic dysfunction in Alzheimer’s disease 

AD brains are characterized by dramatic synapses loss in mesiotemporal regions[26-29]. 

Significant synapse loss also occurs in patients with mild cognitive impairment, a 

harbinger for future AD[30]. In fact, synapse loss is the best pathological correlate of 

cognitive dysfunction in AD, suggesting that synaptic changes are crucial for AD 

pathogenesis[28, 31, 32]. Synapse loss is most prominent in the immediate vicinity of 

senile plaques, suggesting that plaques may be a reservoir of synaptotoxic molecules 

such as Aβ[33-36]. Indeed, recent studies using multiphoton in vivo imaging revealed a 
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halo of oligomeric Aβ around plaques in the brain of AD transgenic mice suggesting that 

oligomeric Aβ may exist in equilibrium with plaques in AD.[37]    

Aβ oligomerizes via an unknown mechanism, adopting several higher order 

conformations such as soluble dimers, trimers, dodecamers, higher order oligomers 

(also named Aβ-derived diffusible ligands (ADDL)), protofibrils, and fibrils[38-42]. Most of 

these higher order Aβ structures have been found to be toxic to neurons. Synthetic Aβ 

oligomers or natural soluble oligomeric Aβ purified from the media of cultured cells 

expressing mutant human APP (hAPP) or extracted directly from the brains of AD 

patients have potent synaptic effects. Sodium dodecyl sulfate (SDS) stable Aβ 

oligomers, ADDLs and protofibrils[43-47] have all been shown to induce synaptic 

dysfunction[43-48]. Specifically, oligomeric Aβ inhibits the induction of long-term 

potentiation (LTP), an electrophysiological correlate of memory formation[41, 44, 49-53]. 

Biophysical methods such as size exclusion chromatography (SEC) and mass 

spectroscopy have been used to show that Aβ dimers and trimers are most potent at 

inhibiting LTP[50, 51]. Inhibitors of Aβ oligomerization rescue impairment of LTP induced 

by Aβ containing media, suggesting that monomeric Aβ is not a potent inhibitor of 

LTP[54]. Complementing its effects on LTP inhibition, oligomeric Aβ has also been 

shown to facilitate the induction of long-term depression (LTD) in hippocampal 

synapses[52, 55, 56]. Impairments in LTP and facilitation of LTD culminate in synaptic 

depression and impairments in neuronal networks[57].  

Molecular basis of oligomeric Aββββ mediated synaptic depression  

The molecular mechanisms underlying oligomeric Aβ-mediated synapse 

dysfunction is very complex. Oligomeric Aβ can induce calcium dyshomeostasis, trigger 
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activation of caspases and calcineurin, and modulate the activity of synaptic excitatory 

receptors and receptor tyrosine kinases, instigating a cascade of molecular events that 

culminate in the inhibition of LTP, facilitation of LTD, and synapse loss (Figure 1).   

Physiologically, LTP and LTD depend on calcium influx through N-methyl-D-

aspartate (NMDA) receptors and/or activation of metabotropic glutamate receptors 

(mGluRs)[58-62]. Synapse potentiation or depression depends on the rate of influx of 

calcium as well as the level of cytosolic calcium. LTP occurs when rapid and high levels 

of calcium influx occur through NMDA receptors, whereas LTD is favored when low level 

calcium influx through NMDA receptors occurs[63]. LTP requires the activation of NR2A 

containing NMDA receptors, whereas LTD requires activation of NR2B containing NMDA 

receptors[64]. These different subclasses of NMDA receptors have distinct calcium influx 

kinetics[65, 66] and modulate distinct postsynaptic signaling pathways[67, 68]. LTP is 

associated with dendritic spine enlargement and increase in synapse density, whereas 

LTD leads to dendritic spine shrinkage and synapse collapse[69-72]. Several protein 

kinases such as p38 mitogen-activated protein kinase (MAPK), calcium calmodoulin-

dependent protein kinase II (CaMKII), glycogen synthase kinase 3-beta (GSK3β), and 

ephrin receptor B2 (EphB2) have all been shown to modulate LTP induction in the 

brain[73, 74]. Phosphatases and proteases such as calcineurin (protein phosphatase 2B 

[PP2B]) and caspases play key intracellular roles in the induction of LTD[58, 62, 75]. 

Transcription factors such as the cyclic AMP response element binding protein (CREB) 

are crucial for the induction of continuous LTP, by increasing the expression of several 

genes including those encoding brain derive neurotrophic factor (BDNF) and nitric oxide 

synthase[76, 77].   

Oligomeric Aβ has been shown to inhibit LTP and enhance LTD by modulating 

the activity of all of the above molecular pathways. Oligomeric Aβ-induced loss of 
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excitatory synapses in the hippocampus requires functional NMDA receptors[51]. 

Several studies have shown that oligomeric Aβ induces partial blockade of NMDA 

receptor currents, which leads to reduction of calcium influx into spines promoting LTD 

over LTP[78, 79]. Aβ binds to 7α-nicotinic acetylcholine receptors (nAchR)[80], triggering 

a series of events that leads to internalization of NMDA receptors via a mechanism 

requiring calcineurin activation[81]. Reduced calcium influx through NMDA receptors 

induced by Aβ limits CAMKII function, LTP, and spine enlargement[82]. In fact, 

oligomeric Aβ-mediated LTP impairment is believed to involve a decrease in the 

activation of MAPK, CaMKII and Akt/protein kinase B, but not protein kinases A and 

C[53, 83, 84]. Aβ has also been shown to induce synaptic depression by activating 

mGluRs, which triggers a series of downstream molecular events involving MAPK and 

calcineurin, ultimately promoting internalization of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors and synapse collapse[73, 85]. In vivo studies 

suggest that Aβ indirectly modulates calcineurin activation by causing calcium 

dysregulation[86-88]. Calcineurin activation promotes the induction of LTD by 

decreasing surface expression of NMDA receptors and increasing internalization of 

AMPA receptors via dynamin-mediated endocytosis[79, 89]. Indeed, Aβ-mediated 

internalization of AMPA[85] and NMDA receptors[81], loss of dendritic spines[85], and 

cognitive decline[90] can all be rescued by inhibiting calcineurin activation[91-93], 

indicating that calcineurin plays a crucial role in Aβ-dependent modulation of synaptic 

plasticity. Further, oligomeric Aβ activation of calcineurin has been shown to induce 

dendritic simplification, spine loss, and neuritic dystrophies at least in part by activating 

NFAT (nuclear factor of activated T-cells) pathways both in vitro and in vivo[91]. 

Oligomeric Aβ has also been shown to activate other synaptic phosphatases such as 

STEP (striatal-enriched tyrosine phosphatase), which function to dephosphorylate NR2B 
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subunits of NMDA receptors and promote their endocytosis, thereby inducing synaptic 

depression[94-96]. 

Oligomeric Aβ can also directly interact with synaptic surface receptor tyrosine 

kinases that play key roles in LTP and LTD modulation. For instance, it has been shown 

that oligomeric Aβ binds to the fibronectin domain of EphB2, a receptor tyrosine kinase 

known to modulate NMDA receptor trafficking and downstream transcription factors such 

as Fos, which plays a critical role in the induction of LTP[97-100]. Oligomeric Aβ binding 

to EphB2 promotes its degradation in the proteasome, impairing the induction of 

LTP[101]. Indeed, EphB2 is depleted in the brains of transgenic hAPP mice and AD 

patients[102], and replacement of EphB2 reverses cognitive impairment in hAPP 

mice[101].     

Other studies have shown that Aβ facilitates hippocampal LTD via a mechanism 

that depends on both NMDAR and mGluR activity. Exogenous extracellular glutamate 

scavengers reverse oligomeric Aβ mediated facilitation of LTD, whereas inhibitors of 

glutamate reuptake mimic oligomeric Aβ-mediated LTD facilitation, suggesting that the 

effects of oligomeric Aβ-mediated LTD facilitation may occur as a result of impaired 

glutamate reuptake at the synapse, leading to post-synaptic NMDA receptor 

desensitization[55]. Metabotropic glutamate receptor activity, GSK-3β signaling, and 

protein phosphatase 2B activity are all necessary for oligomeric-Aβ mediated LTD 

enhancement[55, 73]. 

Caspase-3 activity has also been found to be crucial for oligomeric Aβ-mediated 

facilitation of LTD. Soluble Aβ induces caspase-3 activation at a low level that is not 

sufficient to induce apoptosis[84]. Mitochondria-dependent caspase-3 activation is 

necessary for physiologic LTD via a mechanism involving Akt proteolysis[75]. Soluble Aβ 
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activates caspase-3, which leads to LTD via a mechanism involving activation of 

different protein phosphatases that dephosphorylate AMPA receptors and promote their 

endocytosis from synaptic surfaces, suggesting that prevention of caspase-3 activation 

may be a viable therapeutic approach for treating AD[84]. Acute inhibition of caspase-3 

activity is beneficial, but unfortunately, chronic inhibition of caspase-3 activation beyond 

the baseline did not reverse cognitive decline in hAPP mice, but instead exacerbated 

cognitive impairment, possibly due to a requirement for caspase-3 activity in normal 

synaptic function[84]. Aβ also influences CREB activation, which is crucial for the 

maintenance of LTP, insofar as CREB regulates the expression of genes necessary for 

LTP. One study showed that Aβ decreases the activity of CREB and thus reduces 

expression of genes encoding proteins that are essential for LTP[103]. Another study 

found that excessive activation of extrasynaptic NR2B-containing NMDA receptors, 

which leads to downregulation of CREB underlies oligomeric Aβ-mediated LTP 

inhibition[104].  

 

Oligomeric Aββββ causes synapse shrinkage in Alzheimer’s disease 

The acute effects of Aβ on synaptic physiology appear to translate into structural 

changes in synaptic morphology because enhanced LTD leads to dendritic spine 

shrinkage whereas inhibition of LTP limits spine enlargement[69-72]. Exposure of 

cultured neurons or rat hippocampal slices to oligomeric Aβ induces dendritic spine 

shrinkage and collapse, a phenomenon that can be reversed by treatment with Aβ 

antibodies[51, 105]. APP transgenic mice have significant synapse loss and 

neutralization of oligomeric Aβ with anti-Aβ antibodies leads to reversal of synapse 

collapse[106-108]. Furthermore, increased concentration of Aβ may reduce 
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glutamatergic transmission and leads to synapse loss in hAPP transgenic mice even 

before plaque formation[21, 109, 110]. Oligomeric Aβ-mediated inhibition of LTP and 

enhancement of LTD lead to dendritic spine loss as a result of F-actin remodeling[105]. 

LTD accompanied by shrinkage of dendritic spines occurs via a mechanism involving 

cofilin-mediated depolymerization of actin[71]. Specifically, Aβ indirectly stimulates cofilin 

binding to actin and induction of actin depolymerization in neuronal cytoskeleton. Binding 

of cofilin to actin is promoted by dephosphorylation at Ser3 by phosphatase Slingshot, 

and inhibited by phosphorylation by LIM kinase 1, a process that is modulated by 

oligomeric Aβ[105]. Indeed, in addition to dendritic spine protein loss, increased amounts 

of dephosphorylated cofilin have been found in the brain of AD patients[111, 112].  

 

Oligomeric Aββββ induces cognitive impairments  

The electrochemical and structural effects of oligomeric Aβ on synapses described 

above may lead to potent behavioral and cognitive deficits in animals. Intra-cerebral 

injection of synthetic or naturally secreted oligomeric Aβ impairs complex behavior 

including memory and cognitive function in animals[113-115]. APP transgenic mice with 

increased soluble Aβ in the brain display dramatic cognitive impairments even before the 

onset of plaque deposition[21]. Neutralization of soluble oligomeric Aβ with anti-Aβ 

antibodies reverses behavioral deficits seen in different AD transgenic mice[116-118], 

suggesting that behavioral deficits in AD transgenic mice are caused by soluble Aβ. 

Inhibition of oligomeric Aβ formation decreases both histopathological and behavioral AD 

phenotypes in APP transgenic mice[119], implicating higher order Aβ structures such as 

soluble oligomeric Aβ, but not Aβ monomers, in AD pathogenesis. Levels of soluble 

oligomeric Aβ, but not senile plaques, in the brain correlates with severity of memory 
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loss in human AD patients, however, the precise contribution of different Aβ species to 

cognitive decline is not clear[120].  

While it is now well-established that increased oligomeric Aβ levels in the brain 

leads to synaptic dysfunction, it should be noted that at physiologic levels, Aβ might play 

a normal role in modulating synaptic activity, which likely becomes deranged in the 

setting of excess Aβ production or accumulation, leading ultimately to the clinical 

manifestation of cognitive impairment. Indeed, there is a small but growing body of 

evidence suggesting that Aβ at low concentrations actually promotes LTP and normal 

synaptic function[121-124]. Thus, therapeutic approaches aimed at improving cognition 

by counteracting the toxic effects of Aβ will have to be tailored to target only the toxic 

function of oligomeric Aβ. Nonspecific total inhibition of Aβ may lead to negative effect 

on synaptic function and cognition.         

 

Seeing Aββββ in action at synapses 

Collectively, all of the above evidence suggests that soluble oligomeric Aβ is a 

potent mediator of cognitive impairment in AD. Oligomeric Aβ inhibits the induction of 

LTP, lowers the threshold for inducing LTD, and causes synapse collapse, which may 

ultimately lead to cognitive decline resulting from disrupted neuronal network 

connectivity[57]. For several years, limitations in the resolution of conventional 

microscopy techniques made it difficult to ascertain whether oligomeric Aβ directly 

associates with neuronal synapses and plays a role in their shrinkage and collapse in 

vivo. Recent advances in high-resolution microscopy techniques have made it possible 

to address these questions. For example development of array tomography[125, 126], 

an ultra-high resolution fluorescence imaging technique that allow direct simultaneous 
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visualization of several thousand small structures such as synapses and peptides in 

tissue has allowed determination of whether oligomeric Aβ plays a direct role in synapse 

loss in AD. Using array tomography and a conformation specific antibody (NAB61)[127], 

we demonstrated that oligomeric Aβ in the brain of APP/PS1 transgenic mice directly 

colocalizes with a subset of synapses and is associated with their shrinkage and 

collapse[37] (Figure 2), suggesting that the in vitro effects of Aβ oligomers observed 

using cell based assays likely also occur in vivo, supporting the notion that oligomeric Aβ 

adversely impacts synapses. High-resolution techniques such as array tomography 

could be extended to study the effects of oligomeric Aβ on synapses in the brain of AD 

patients. Furthermore, it will be important to determine whether Aβ oligomers are 

targeted to synapses by specific carrier proteins or whether they are produced locally at 

synapses. A number of studies have suggested that production of Aβ (at least in 

monomeric form) is regulated by activity[110, 128-130] and Aβ appears to play a 

negative feedback function on synaptic activity[110, 131, 132]. Mechanistically, synaptic 

activity-dependent production of Aβ requires clathrin-mediated endocytosis of APP, 

which is then cleaved by β- and γ-secretase in late endosomes at synapses to form 

Aβ[129]. Nonetheless, it is also possible that Aβ binding proteins like apolipoprotein E, 

which also play a role at the synapse, may stabilize Aβ oligomers[133] in the 

extracellular space and deliver them to synaptic sites.  

It is presently unclear whether Aβ oligomers interact directly with specific high 

affinity receptors at the synapse to induce synapse dysfunction. A number of recent 

studies have reported high affinity binding of oligomeric Aβ to cellular prion protein 

(PrPC), which was necessary for Aβ to mediate acute synaptic depression, synapse loss, 

and cognitive impairment in vivo[134, 135]. Subsequent studies, however, could not 

reproduce these findings[136-138]. This is likely because of differences in experimental 
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paradigms used in the subsequent studies. Single particle tracking of Aβ oligomers 

labeled with quantum dots exposed to hippocampal neurons in culture have nonetheless 

demonstrated that the diffusion of Aβ oligomers is dramatically limited upon binding to 

synaptic sites, suggesting that high affinity oligomeric Aβ receptors may be present at 

synapses[139]. Identifying these high affinity receptors could aid in designing drugs 

capable of blocking the deleterious effects of oligomeric Aβ on neuronal synapses.          

 

Concluding remarks 

Based on the evidence discussed here, we postulate that AD begins as a disease of 

synaptic dysfunction and synapse loss then progresses to include widespread neuronal 

loss and neuronal network failure. Findings from recent experiments continue to provide 

insight into the complicated molecular underpinnings of synapse dysfunction in AD with 

mounting evidence pointing to soluble oligomeric Aβ as a key player in the induction of 

synaptic failure. Oligomeric Aβ activates a variety of molecular cascades that culminate 

in synapse dysfunction, shrinkage, collapse and loss (Figure 1). These pathological Aβ-

triggered molecular events, however, may become independent of Aβ as the disease 

progresses, with downstream tau effects causing overt neuronal loss, exacerbating the 

loss of connectivity between neurons[140]. If this is correct, at least two main therapeutic 

approaches could be taken to combat the disease effectively: 1) early interventions that 

prevent the initiation of Aβ-triggered pathological events; or 2) inhibition of specific 

downstream pathways activated by Aβ. The failure of previous therapeutic approaches 

aimed at removing toxic Aβ species from the brain (e.g. active immunization with Aβ 

peptide) in clinical trials may be because they were given to the wrong cohort of patients 

(i.e. patients with advanced AD, whose Aβ-triggered neuronal events may have become 
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independent of Aβ)[140]. Perhaps, a more effective approach will be to initiate such anti-

Aβ therapeutic regimens at very early stages of the disease. For this approach to be 

successful, highly sensitive and specific biomarkers for diagnosing AD need to be 

developed to identify AD patients at the very early stages of the disease. For patients 

who have progressed into symptomatic AD, it will likely be necessary to target pathways 

downstream of Aβ, including tau hyperphosphorylation and accumulation in the soma, 

which are linked to neuronal death[141, 142]. In conclusion, Aβ–mediated synaptic 

dysfunction appears to be an important driving factor in AD pathogenesis and 

understanding the molecular underpinnings may provide effective therapeutic targets for 

combating the disease. 
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Figure captions 

Figure 1: Molecular pathways of oligomeric Aββββ mediated synaptic dysfunction 

Oligomeric Aβ (oAβ) can induce calcium dyshomeostasis, trigger activation of caspase 
3, or modulate the activity of NMDARs either directly or through intermediate molecules 
(shown as X) involved in the trafficking of NMDAR (e.g. EphB2). Activation of different 
subtypes of NMDA receptors may trigger different intrasynaptic pathways. Activation of 
NR2A containing NMDARs may lead to high changes in synaptic calcium concentration 
([Ca2+]), which triggers downstream events involving CaMKII and pCREB (not shown), 
facilitating the induction of LTP, which promotes dendritic spine enlargement. 
Alternatively, activation of NR2B containing NMDAR may trigger a low rise in 

intrasynaptic calcium, which is favored by oAβ interactions with synapses (away from 

dotted line pathway), leading to calcineurin (CaN) activation; oAβ-dependent active 
caspase 3 can also activate CaN. Activated CaN dephosphorylates GluR subunits of 
AMPARs promoting internalization of AMPARs from the surface of synapses leading to 
LTD, which leads to dendritic spine shrinkage. Furthermore, active CaN 
dephosphorylates cofilin rendering it active to depolymerize dendritic spine actin, which 
leads to dendritic spine collapse and synapse loss.       

 

Figure 2: Oligomeric Aββββ associates with a subset of synapses in the brain of 
Alzheimer’s disease transgenic mice 

A) Array tomograms showing oligomeric Aβ (oAβ) localized to synaptic sites near senile 
plaques in APP/PS1 mice. B) A higher magnification view of the outlined square in panel 

A showing multiple pre- and post-synaptic elements colocalized with oAβ (arrows) 

stained with an oAβ specific antibody (NAB61). Scale bar is 10 µm in A and 2 µm in B.  
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