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Abstract 
      The focus of this chapter is brain injury as a risk 
factor for Alzheimer’s disease (AD). The cause of 
late-onset AD is currently unknown, but most likely 
has something to do with the buildup of amyloid-beta 
(Aβ) in the brain. Evidence suggests that brain injury 
may increase the risk for AD. People with traumatic 
brain injury, seizures or stroke are more likely to 
develop Aβ plaques in their brains. Even children with 
traumatic brain injury may quickly develop AD-like 
plaques. The most common cause of brain injury in 
the elderly is stroke, and most AD brains exhibit stroke
pathology at autopsy. Animal experiments suggest that
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brain damage elevates Aβ levels and accelerates plaque deposition. It is 
possible that brain damage initiates or accelerates AD pathology by causing 
elevated brain Aβ levels. Potential mechanisms, including upregulated 
amyloid precursor protein and ApoE, are reviewed. Thus, brain damage may 
trigger a cascade of events leading to AD. Because AD pathology includes 
buildup of vascular Aβ, and because this process increases the risk of future 
stroke, the process may self-propagate. If early efforts are made to prevent 
excessive Aβ deposition after brain damage such as stroke, it may be possible 
to delay the onset of AD. Because AD is a disease of the elderly, delaying the 
onset by only a few years would significantly decrease its prevalence. 
Therapeutic strategies could include removal of Aβ via antibodies, inhibiting 
Αβ formation, and nutritional prevention of brain damage with foods rich in 
polyphenols and/or essential fatty acids. 
 
Introduction 
 Alzheimer’s disease (AD) is the most common neurodegenerative disorder 
of aging and cause of dementia, affecting approximately 1 in 10 individuals over 
the age of 65, and 1 in 2 over 85. Memory loss for recent, but not distant, events 
is the first and most prominent symptom, followed by a progressive decline in 
cognitive (e.g., language, executive) and motor abilities. Neuropathological 
hallmarks of the disease include the accumulation of protein deposits (“plaques”) 
between and surrounding the brain’s neurons and neurofibrillary tangles (NFTs) 
inside the neurons. Although the assessment of behavioral symptoms (especially 
memory loss) can provide a reasonably accurate diagnosis of AD, other forms of 
dementia can cause similar deficits. Therefore, a diagnosis of AD can only be 
confirmed after post-mortem identification of these hallmark neuropathological 
characteristics. Additionally, vascular plaque deposition, mitochondrial 
dysfunction, inflammation, astrogliosis, microglial activation, and neuronal cell 
damage and death are observed in the brains of AD patients. 
 Similar to other age-related neurodegenerative diseases (like Parkinson’s 
disease), the behavioral symptoms of AD are generally not observed until 
significant levels of neuropathology and neurodegeneration have accumulated. 
Because this process may take as long as 20 years1-5, post-mortem examination 
of brains from elderly, but cognitively normal, people often reveals both the 
plaques and tangles indicative of AD. The concept of cognitive reserve, which 
suggests that certain people may be more (or less) susceptible to the behavioral 
impact of neurotoxicity and/or neurodegeneration than others6-8, may explain 
this phenomenon. 
 The plaques that build up in the brain are composed predominantly of the 
amyloid-β (Aβ) peptide9, but also contain other proteins (e.g., apolipoproteins) 
and non-proteins (e.g., hemes10,11, metals). Deposition generally starts in the 
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medial temporal lobes, primarily within and around the entorhinal cortex and 
hippocampal formation, an area of the brain important for learning and 
memory, and then gradually spreads throughout the cortical and subcortical 
areas12. Neurons engulfed by the plaques have abnormal and twisted neuronal 
processes (axons and dendrites) associated with intracellular NFTs. The NFTs 
are caused by intracellular aggregates of tau, a microtubule-associated protein 
that normally helps to stabilize the cytoskeleton of the long neuronal processes. 
These aggregates (paired helical filaments) of tau eventually damage the 
cytoskeletal microtubules, leading to the disruption of intracellular transport 
mechanisms, formation of NFTs, and dystrophic neurites. The plaques are also 
associated with inflammation, microglial activation, synaptic loss, neuronal 
atrophy and apoptotic cell death, suggesting that the accumulation of Aβ is 
somehow neurotoxic. Levels of neurotransmitters in the brain, including 
acetylcholine (ACh), decrease as the neurons that produce these 
neurotransmitters atrophy and die13. 
 
Aβ toxicity 
 The nature of Aβ’s toxicity remains elusive, but probably involves several 
inter-related mechanisms. In vivo and in vitro studies imply that Aβ induces 
damage via oxidative stress. For example, intracellular Aβ can enter cellular 
mitochondria, inducing free radical formation and inflammation14,15. 
Furthermore, extracellular Aβ-heme complexes that form within plaques can 
cause oxidative damage to muscarinic ACh receptors, which is prevented by 
treatment with antioxidant compounds10,11,16. Additionally, Aβ deposits are 
associated with intracellular tau disruption and neuronal death in hippocampal 
cell cultures17, and may also induce hypersensitivity to excitotoxic neuronal 
damage18. Whatever the mechanism, locally elevated concentrations of Aβ 
seem to cause a loss of proper neuronal function as measured by long-term 
potentiation (LTP)19-22. The amount of synaptic loss within Aβ plaques 
currently provides a better biomarker of cognitive dysfunction than amount of 
plaque deposition per se 23-26. 
 It is also unclear as to which form of Aβ is toxic. At high enough 
concentrations, soluble monomeric Aβ proteins start to polymerize. Dense-core 
aggregates of Aβ plaques with a β-sheet (amyloid) conformation, but not diffusely 
aggregated Aβ, are generally associated with dystrophic neuronal processes27,28. 
Other studies suggest that toxicity results from particular intermediate species of 
Aβ aggregates (e.g., oligomeric) rather than deposited Aβ plaques 24,29-31. 
 
APP and Aβ production 
 The Aβ peptide consists of 39-43 amino acids, and is normally 
enzymatically cleaved from the much larger amyloid precursor protein (APP). 
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The physiological roles of Aβ, if any, are unknown.  The physiological roles of 
APP, which is a transmembrane protein with a large extracellular domain, may 
involve neuronal development and/or synaptic plasticity32. APP is axonally 
transported (and plays a role in axonal transport) and accumulates in 
presynaptic terminals and growth cones33. It may function to inhibit synapse 
formation, as in vitro cultures of APP-/- hippocampal neurons (which lack 
APP) have a higher synaptic density33. An overabundance of synapses may 
partially explain the heightened sensitivity to kainic acid-induced excitotoxic 
seizures34 and memory deficits observed in APP-/- mice35. Mice that lack APP 
and the APP-like proteins APLP1 and APLP2 (similar proteins that lack the 
internal Aβ sequence) die soon after birth with marked neuroanatomical and 
behavioral abnormalities36. Thus, APP may share some redundant 
physiological functions with the APLPs. 
 Full length APP in the brain is metabolized into a number of fragments by 
the alpha- (α), beta- (β), and gamma- (γ) secretases, yielding a variety of 
amino- (N-) terminal, internal, and carboxy- (C-) terminal peptides. In general, 
APP cleavage tends to follow one of two pathways. Aβ is produced by the so-
called amyloidogenic pathway, and prevented by the non-amyloidogenic 
pathway37,38. 
 
APP processing – The amyloidogenic pathway 
 APP cleavage by β-secretase (β-site APP cleaving enzyme/BACE1, also 
known as memapsin-2 and Asp2) near the membrane surface followed by  γ-
secretase cleavage within the cell membrane ultimately produces three peptide 
fragments. The initial cleavage of APP at the β-site yields two APP fragments. 
The N-terminal fragment is called soluble/secreted APP-β (sAPPβ), and the C-
terminal fragment is called β-C-terminal fragment (β-CTF, also known as 
C99). Cleavage of the membrane-bound β-CTF by γ-secretase yields two more 
fragments: Aβ and γ-CTF (also known as APP intracellular domain, or AICD). 
 Depending on the actual site of γ-secretase cleavage, different isoforms of 
Aβ (39-43 amino acids long) will be produced. The shorter isoforms (e.g., 
Aβ40) tend to exist in a soluble monomeric state. The hydrophobic C-terminals 
of the longer Aβ isoforms (e.g., Aβ42) tend to cling together, forming 
oligomeric aggregates that eventually become deposits of insoluble Aβ plaque 
as they take on a β-sheet amyloid confirmation. These dense-core amyloid 
plaques are associated with neuritic dystrophy, suggesting that the process of 
polymerization from soluble, monomeric Aβ to insoluble amyloid appears to 
have a toxic effect on neurons. There is some evidence that sAPPβ and/or γ-
CTF/AICD, the other APP peptide fragments produced by the amyloidogenic 
pathway, may have neuroprotective properties39, and that γ-CTF can act as a 
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nuclear transcription factor40,41. There is also mounting evidence that the 
majority of APP processing actually occurs inside the cell42 and that Aβ is 
released into the extracellular matrix via exocytosis during synaptic activity43. 
 
APP processing – Non-amyloidogenic pathway 
 A number of zinc metalloproteinases (sheddase / disintegrin / adamalysin 
proteins like ADAM9, ADAM10, ADAM17/TACE, BACE2) have been to 
shown to cleave APP at the α- site32,44-50. Because the α-secretase cleavage site 
lies within the Aβ domain of APP, α-secretase cleavage at the membrane 
surface 51 followed by γ-secretase cleavage within the membrane prevents 
production of Aβ and ultimately produces three peptide fragments. The first 
cleavage of APP by an α-secretase yields soluble/secreted APP-α (sAPPα) and 
α-CTF (also known as C83). Cleavage of the membrane-bound α-CTF by γ-
secretase yields two more fragments: p3 (essentially a ~32 amino acid long 
subset of the Aβ protein) and γ-CTF/AICD. 
 Many studies have found that the α-secretase-cleaved APP ectodomain, 
sAPPα, has neuroprotective properties. For example, administration of 
exogenous sAPPα was neuroprotective against ischemia in rats52. This APP 
fragment is released from neurons in response to synaptic activity and may 
modulate neuronal excitability, synaptic plasticity, neurite growth, and cell 
survival. sAPPα has demonstrated effects on calcium homeostasis, potassium 
channels, N-methyl-D-aspartate (NMDA) glutamate receptors, and nuclear 
transcription factors33,53,54. Its neuroprotective mechanisms may involve raising 
the excitotoxicity threshold by stabilizing calcium levels55-59. Other putative 
mechanisms include the induction of gene expression for a number of 
neuroprotective proteins, including transthyretin (TTR), via interactions with 
nuclear factor-kappa B (NF-κB)53. In support of this idea, a transgenic mouse 
model of AD that expresses high levels of human APP and has high brain 
levels of Aβ, sAPPα and TTR (the Tg2576/APPsw mouse) develops age-
related dense-core amyloid plaques, but not NFTs or cell loss. When given an 
antibody against TTR, effectively removing or inactivating TTR in the brain, 
the APPsw mice develop increased Aβ accumulation in the brain, intracellular 
tau phosphorylation, and neuronal apoptosis/death in the hippocampus, 
suggesting that sAPPα may exert part of its neuroprotective effects by 
inducing the upregulation of other neurotrophic and neuroprotective proteins53. 
 Note that whereas both the β-secretase/amyloidogenic and the α-secretase 
non-amyloidogenic APP cleavage pathways produce fragments with potentially 
neuroprotective properties, the α-secretase pathway also prevents the formation of 
the potentially neurotoxic Aβ peptide. These neuroprotective fragments may provide 
an important clue as to the physiological role of APP and its cleavage products. 
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Accumulation of Aβ as a causative factor in AD 
 The gradual accumulation of Aβ in the brain appears to be associated with 
various downstream events causing functional neuronal deficits, structural 
brain damage, cognitive and behavioral impairments, and eventually death. 
Pathophysiological conditions that result in the accumulation of Aβ in the 
brain generally increase the risk of developing AD neuropathology. For 
example, Down syndrome, also known as trisomy 21, results from one extra 
copy of the 21st chromosome, which contains the APP gene. The condition is 
associated with the gene-dose dependent production of ~50% more APP than 
normal, leading to elevated Aβ production and deposition, and dementia by 
around 50 years of age60,61. 
 Furthermore, over 30 genetic mutations have been identified in various 
families around the world that lead to early onset familial AD. These mutations 
are generally autosomal dominant and account for less than 5% of all AD cases. 
The mutations are either in the genes for APP or the presenilins (PS1 and PS2), 
which are membrane-bound constituents of γ-secretase. These familial AD 
mutations in the APP and PSEN genes all result in abnormally high levels of 
APP production and/or amyloidogenic APP processing. This, in turn, leads to the 
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increased production and deposition of Aβ (especially Aβ42) in the brain and 
earlier onset of behavioral symptoms than in so-called “sporadic” AD62,63. 
 
Animals that model aspects of AD 
 The identification of genetic mutations associated with early-onset familial 
AD has spawned the development of several lines of transgenic mice that also 
express these mutations. These transgenic mouse models of AD generally have 
relatively high brain levels of mutant human APP and develop age-related 
cognitive deficits coincident with the formation of insoluble Aβ aggregates and 
Aβ amyloid deposits64-71. For example, one commonly used transgenic mouse 
model of AD is the Tg2576 (APPsw) mouse. These transgenic mice express 
human APP from a Swedish family with autosomal dominant early-onset 
familial AD caused by a double mutation in the APP695 gene (Lys670 → Asn 
and Met671 → Leu)72. Family members with these APP genetic mutations experience 
high levels of Aβ production and extensive accumulation of amyloid plaques 
(composed mostly of amyloidogenic Aβ42

73) in the brain. The age of disease 
onset in the family members with these mutations averages ~50 years. 
 APPsw transgenic mice express the mutant human APP at roughly 5x the 
brain levels of wildtype mouse APP 74. By approximately 6 months of age68,74, 
these mice develop learning and memory deficits coincident with the formation 
of detergent-insoluble deposits of Aβ (especially Aβ42)75,76. Amyloid plaques 
associated with dystrophic neurites start to form by 8 months of age 67-69. 
Because soluble forms of Aβ in the brain are elevated by as early as 2 months 
in these mice, high brain levels of soluble Aβ are probably not solely responsible 
for the emergence of cognitive deficits at 6 months of age. In double-transgenic 
APPsw mice that also produce human mutant PS1, both cognitive deficits and 
insoluble Aβ aggregates are detectable by as early as 2 months of age76. 
 PDAPP transgenic mice express a different form of human mutant APP 
that is also associated with autosomal dominant familial AD resulting from the 
increased production of Aβ42

77. These transgenic mice also develop age-related 
learning deficits, accumulation of diffuse and neuritic plaques, glial activation, 
and abnormal phosphorylation of cytoskeletal microtubule-associated proteins 
beginning at around 6-9 months of age78,79. Thus, cognitive deficits associated 
with the appearance of insoluble Aβ aggregates have been reported in lines of 
transgenic mice in which the aggregates emerge at different ages. 
 
Aβ accumulation causes AD neuropathology 
 Further evidence for the support of Aβ accumulation as a potential 
causative factor in AD comes from the observation that systemic treatments 
that lower brain levels of Aβ can prevent and reverse both behavioral and 
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neuronal dysfunction, as well as ameliorate intracellular tau pathology80, in 
transgenic mouse models of AD44,79,81-84. For example, the systemic 
administration of monoclonal anti-Aβ antibodies to old PDAPP mice 
decreased Aβ deposition and improved both cognitive performance and 
neuronal function as measured by long-term potentiation (LTP)79. Additionally, 
dietary consumption of pomegranate juice, which contains very high levels of 
antioxidants and β-secretase inhibiting polyphenols, decreased Aβ deposition 
and improved cognitive performance in APPsw mice82. These results strongly 
suggest that Aβ accumulation and the eventual appearance of some form of Aβ 
aggregate is responsible for the age-related neuronal dysfunction that 
eventually disrupts cognitive performance in these transgenic mice.  
 Thus, the ultimate cause of late-onset (sporadic) AD is currently unknown, 
but most likely has something to do with the abnormal buildup Aβ in the brain. 
The reason for Aβ accumulation in AD appears to be related to high levels of 
APP in the brain and/or excessive amyloidogenic APP processing. The 
accumulation of Aβ seems to induce a series of events that lead to even more 
Aβ accumulation, resulting in a vicious circle of neurodegenerative decline, 
known collectively as the amyloid cascade hypothesis of AD 85-87. 
 
Risk factors 
 The most prevalent risk factor for the development of AD is aging. Other 
documented risk factors include genetics, diet, and brain injury. 
 
Genetics as a risk factor 
 The autosomal dominant mutations in the genes that encode APP and the 
presenilins inevitably predispose individuals to develop early-onset familial 
AD by leading to either high levels of brain APP or excessive processing of 
APP via the amyloidogenic pathway. The major documented genetic risk 
factor for sporadic/late onset AD is carrying of a copy of the ε4 allele of the 
gene that encodes apolipoprotein E (apoE). ApoE is a low-density lipoprotein 
(LDL) that seems to play an important role in AD pathogenesis, and can also 
potentially interact with a number of different receptors as well as structures in 
the extracellular matrix. 
 Three major alleles of the APOE gene exist: ε2, ε3, and ε4. Carriers of the 
APOE4 gene are more likely to develop AD, experiencing earlier and more 
pronounced Aβ deposition, hypercholesterolemia, and vascular dementia than 
individuals without the APOE4 gene88-92. The increased AD risk is gene dose-
dependent in that carriers of two copies of the APOE4 gene have an even higher 
risk of developing AD than carriers of only one copy of APOE4 92-96. Carrying a 
copy of the APOE2 gene confers a degree of protection from Alzheimer’s 
disease. The role of apoE has been investigated using APOE knockout (APOE-/-) 
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mice, which express no apoE, and transgenic mice that express human apoE 
instead of mouse apoE. APOE-/- mice appear to be relatively normal, with no 
obvious cognitive impairment. Transgenic mice that express human apoE3 also 
seem to be unimpaired, whereas transgenic mice that express human apoE4 have 
profound learning and memory deficits in the absence of any obvious 
neuropathology97,98, suggesting that apoE may play separate, but interacting, 
roles in the neuropathology and cognitive deficits observed in AD. 
 
Mechanisms of APOE genotype as a risk factor 
 Although the mechanism of increased AD risk by an APOE4 genotype is 
unclear, transgenic mice with human mutant APP have been crossed to 
transgenic mice that express different human apoE isoforms, allowing for the 
in vivo exploration of interactions between Aβ and apoE. ApoE is found co-
localized with Aβ in plaques 99-104, and poorly lipidated apoE (produced in the 
absence of the lipid transporter ABCA1) is associated with the accelerated 
formation of insoluble Aβ and amyloid plaques in old PDAPP, Abca-/- mice 104. 
 Postmortem examination of synaptic density in the plaques of AD brains 
revealed that an APOE4 genotype is associated with the fewest synapse-
associated proteins, whereas the plaques of APOE2 carriers have the highest 
synaptic density 25. In both APPsw, apoE-/- and PDAPP, apoE-/- mice (APP 
transgenic mice that also lack mouse apoE), Aβ deposition is significantly 
reduced, the vast majority of deposits are diffuse in nature (i.e., non-amyloid) 
and not associated with neuritic dystrophy 105-110, and cognitive deficits appear 
to be attenuated 111. These findings suggest that apoE is somehow involved in 
the polymerization of soluble Aβ into a β-sheet amyloid structure, and that the 
reduction of cognitive deficits in these mice results from lower brain levels of 
aggregated Aβ (e.g., insoluble aggregates or soluble Aβ oligomers). Thus, the 
absence of apoE prevents aggregation of Aβ into toxic forms, and this may be 
linked to an attenuation of cognitive deficits in APP transgenic mice that lack 
apoE. Consequently, this evidence implies that the presence of apoE 
(especially apoE4) induces or enhances the aggregation of Aβ into toxic forms. 
 Besides playing a role in lipid transport, apoE and/or its peptide fragments 
appear to modulate the inflammatory response to brain injury, possibly by 
down-regulating the CNS anti-inflammatory and glial activation responses 
112,113. ApoE4, however, does not reduce inflammation efficiently as apoE3 114, 
suggesting another mechanism by which an APOE4 genotype can accentuate 
neuronal dysfunction. Furthermore, the introduction of iron into in vitro 
cultures of neuronal and vascular tissue produced oxidation of proteins and 
accumulation of Aβ and apoE in lysosomes and Aβ in the vasculature 115-118. 
Tissue from an apoE4 lineage is significantly more affected than apoE3 tissue, 
suggesting that apoE4 may allow oxidative stress to go unchecked. 
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Diet as risk factor 
 Epidemiological and experimental evidence suggests that diet can alter the 
concentration of Aβ in the brain and consequently affect the risk for 
developing AD. For example, a high-cholesterol diet has been shown to 
elevate levels of both Aβ and apoE in the brains of rabbits (which express the 
human form of Aβ and naturally develop AD-like neuropathology with aging) 
119 and APP transgenic mice 120. Altering cholesterol and phospholipid levels in 
cell membranes can modulate the activity of membrane-bound enzymes, 
including the β- and γ-secretases that produce Aβ. These “amyloidogenic 
pathway” secretases seem to require cholesterol-rich “lipid rafts”, or detergent-
insoluble membrane domains (DIMs) within the membrane121-124. Conversely, 
α-secretase cleavage, which prevents the production of Aβ, requires a 
cholesterol-poor/phospholipid-rich, fluid membrane47,125, thereby presenting 
one mechanism by which high cholesterol intake can lead to an increase in Aβ 
production and deposition. The LDLs (including apoE), which bind and transport 
cholesterol, are also highly sensitive to oxidative free radical damage, tending 
to aggregate, which impairs vascular perfusion and leads to hypoperfusion of 
the brain and increased risk of stroke. Similarly, high-carbohydrate diets can 
alter the metabolism of cellular membrane proteins (e.g., APP) similarly to the 
apoE4 protein 126, and conversely, diets high in omega-3 essential fatty acids 
and/or bioactive phytochemicals (e.g., polyphenols) have been shown to 
reduce AD-like neuropathology in transgenic mice 82,127-131. 
 
Brain injury as a risk factor 
 Epidemiological and experimental evidence also suggests that a variety of 
types of brain injury may accelerate AD neuropathology and, consequently, the 
risk of developing AD. For example, traumatic brain injury (TBI) is associated 
with accelerated Aβ deposition and an increased risk of developing AD. 
Individuals who sustain moderate to severe head injury at some point in their life 
are more likely to develop AD and/or other forms of dementia 132-134, and Aβ 
deposition is found in the brains of approximately 1/3 of all people, regardless of 
age, who die shortly after TBI135-138. Professional athletes who experience 
repeated blows to the head, including boxers, football players, and soccer 
players, also have an increased risk of developing dementia (sometimes termed 
dementia pugilistica) with age139-145. Additionally, TBI patients are reported to 
have elevated levels of the amyloidogenic Aβ42 in their cerebrospinal fluid for up 
to a week post-injury in comparison to both controls and AD patients146-149. 
These observations suggest that brain concentrations of Aβ spike transiently 
following traumatic brain injury, accelerating the aggregation process, eventually 
leading to worse neuropathology and earlier emergence of symptoms. 
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 Other types of brain damage are also associated with AD-like 
neuropathology. Aβ plaque deposition in the cerebral arteries (cerebral 
amyloid angiopathy; CAA) can increase the risk of hemorrhagic or ischemic 
stroke150-155. Because of this, AD neuropathology has historically been seen as 
a risk factor for stroke. Indeed, the majority of autopsied brains with AD 
neuropathology also show evidence of stroke damage, leaving open the 
possibility that stroke damage can increase the risk for AD. Finally, Aβ 
deposition is also locally accelerated following seizure-induced neurodegeneration 
in human epileptic patients156. 
 The effects of brain injury on AD neuropathology have also been studied 
using rats and APP transgenic mice157. It was first reported in 1991 that a stab 
injury to the brain elevated local levels of APP in rats158. Injury-induced local 
increases in Aβ concentration have been reported in a number of animal 
studies using both rodents and rabbits159-162. Relatively mild, but repetitive, 
cortical impact injury exacerbated levels of brain lipid peroxidation, Aβ 
deposition, and cognitive impairments in APPsw mice164,165. Additionally, 
PDAPP transgenic mice lost 84% of their CA3 hippocampal neurons following 
experimental TBI, whereas wildtype control mice only lost 36%163. 
 TBI induces brain inflammatory responses, oxidative stress, excitotoxic 
damage, apoptosis, astrogliosis, neuronal loss, and changes in brain 
vasculature. APP, microtubule-associated protein (MAP-2), and apoE 
accumulate in damaged white matter after TBI, indicating disrupted 
anterograde axonal transport and/or axotomy166-169. The post-injury 
accumulation of APP is consistent enough that APP immunohistochemistry is 
used as a marker for brain damage in experimental TBI models170-172. 
 TBI also induces a transient increase in APP metabolism 173, which may 
prove to be neuroprotective if the APP is subsequently cleaved by α-secretase, 
leading to locally increased levels of the neuroprotective APP fragment 
sAPPα. When exogenous sAPPα was administered in vivo after TBI in rats, it 
improved motor function and reduced cellular apoptosis and axonal injury174. 
Interestingly, “preemptive” TBI induces neuroprotection to retinal ganglion 
cells from subsequent optic nerve crush-induced cell death, suggesting that 
brain damage may cause a systemic neuroprotective response to brain injury175. 
Oxidative stress following TBI may also play a role in elevated Aβ 
accumulation in the brain. Administration of an antioxidant (vitamin E) 
following TBI prevented the brain lipid peroxidation, elevated Aβ accumulation, 
and behavioral impairments observed in non-treated APPsw mice164. 
 Experimental stroke, including global cerebral ischemia and focal 
ischemia induced by middle cerebral artery occlusion, also induces the 
transient accumulation of APP and apoE in and around reactive astrocyte glial 
cells and damaged vasculature, axons, and neurons in the hippocampus, cortex, 
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cerebellum, basal ganglia and thalamus99-102,176-178. As with TBI, APP 
accumulation is also used as an immunohistochemical marker of experimental 
stroke-induced axonal damage. Short-term accumulation peaks within about 1 
week of the injury, and tends to dissipate within a couple of weeks 179. The 
accumulation appears to be due in part to APP upregulation at the mRNA level 
180-185 in addition to other factors186. Similar to TBI, stroke also causes a high 
degree of oxidative stress, suggesting another mechanism by which APP and Aβ 
may be modulated. Transient hypoxia in cultured cortical neurons induces a number 
of biochemical processes that are common to AD187, including mitochondrial 
dysfunction, neuronal membrane damage, apoptosis, and APP cleavage. 
 As noted, human epileptic seizures are also associated with Aβ 
accumulation in the epileptogenic tissue156. During a seizure or other brain 
insult, the excitatory neurotransmitter glutamate accumulates in the 
extracellular space, causing over-stimulation of neurons and leading to 
apoptotic cell death. This process, termed excitotoxicity 188, is often studied 
experimentally using kainic acid. Kainic acid-induced excitotoxic damage 
causes increased expression of glial-produced APP, but a decrease in neuronal-
produced APP in rats. These effects were prevented by MK-801 and 
pentobarbitone, drugs that prevent excitotoxic damage189. The release of 
intracellular Aβ during injury-induced heightened synaptic activity43 provides 
yet another mechanism by which a host of brain injuries may lead to the 
ultimate accumulation of Aβ, causing an increased risk of AD. 
 
Risk factor interactions 
 Epidemiological and experimental evidence suggests that carrying at least 
one copy of the APOE4 allele can interact synergistically with the effects of 
brain injury, increasing both the acute and chronic consequences of the injury in 
addition to increasing the risk of developing AD. Human studies have shown 
that both short- and long-term behavioral recovery from TBI can be influenced 
by APOE genotype. For example, APOE4 carriers scored significantly worse 
than APOE4- individuals on neuropsychological tests 3 weeks after mild to 
moderate TBI190, and APOE4+ TBI patients experienced longer periods of 
unconsciousness and worse clinical outcome191. APOE4 carriers were twice as 
likely as APOE4- individuals to be either dead, comatose, or severely disabled 6 
months following TBI192. In addition to a generally worse clinical outcome, the 
long-term effects of TBI on memory193 and motor194 performance are 
significantly worse for APOE4 carriers. Mild, but repetitive, head injury also 
appears to interact with apoE. APOE4+ professional boxers had significantly 
worse cognitive and motor scores on a neurological test of chronic brain injury 
than APOE4- boxers195. Similarly, older APOE4+ professional football players 
scored lower on cognitive tests than APOE4- players196.  
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 Additionally, the risk of developing AD following brain injury is 
dramatically heightened by an APOE4+ genotype, in that APOE4+ individuals 
are even more likely to develop dementia if they sustain TBI sometime in their 
life. The risk for developing AD associated with an APOE4+ genotype 
quintuples from 2x to 10x following a TBI132,197. TBI is associated with 
accelerated Aβ deposition in the brain’s parenchyma and vasculature198, with 
an even greater effect observed in APOE4+ individuals199-201. Additionally, a 
significant proportion of the people with Aβ deposition in their brain shortly 
after dying from TBI have at least one copy of the APOE4 allele138,198,200,201. 
Aβ deposition can also be found in the brains of even young APOE4+ epilepsy 
patients, who experience excitotoxic neurodegeneration and locally increased 
synaptic activity as a result of their seizures156. 
 Subjecting transgenic mice that express human APP and/or apoE isoforms 
to various models of brain injury has elucidated the interactions between these 
major risk factors for AD. In an experiment evaluating the effects of TBI on 
APOE3 versus APOE4 transgenic mice, greater mortality and worse behavioral 
outcomes, but no differences in the amount of tissue loss, were observed in the 
APOE4 mice 202. Additionally, within 24 hours of a closed head injury insult, 
APOE4 transgenic mice expressed less sAPPα than APOE3 mice173. 
 Studies of APP x apoE transgenic mice have provided additional evidence 
that brain injury can interact with Aβ and an APOE4 genotype to accelerate 
AD neuropathology. PDAPP transgenic mice that also express human APOE3 
or APOE4 were subjected to a cortical impact TBI and later assessed for TBI-
induced neurodegeneration and AD-like neuropathology203. Although no 
differences were found in the amount of cortical or hippocampal cell loss, Aβ 
deposition following TBI was accelerated in PDAPP, APOE4 mice as 
compared to PDAPP, APOE3 mice or PDAPP, APOE-/- mice. The finding that 
TBI accelerated the Aβ deposition process in the presence of human apoE4 as 
compared to apoE3 suggests that TBI and apoE4 interact to result in not only 
higher local concentrations of Aβ, but also earlier aggregation. 
 Overall, these data suggest that the association between APOE4 and higher 
risk for functional outcome and/or AD following TBI may in part be due to 
isoform-specific APOE/Aβ interactions contributing to the premature 
development of AD neuropathology. 
 
Mechanisms of the apoE X brain injury interaction 
 It is not yet clear how brain injury can result in an apoE isoform-dependent 
increase in amyloid deposition. Some in vivo studies have found that apoE can 
influence aspects of brain function and plasticity following different types of 
brain injury202,204-209, and it is probable that apoE influences outcome after 
brain injury via more than one mechanism. 
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 A number of both in vitro and in vivo studies have demonstrated that apoE 
interacts with Aβ and influences the probability of Aβ aggregation into a β-
sheet/amyloid/neurotoxic conformation210,211. The levels of apoE in the brain 
may play a significant role in this effect, as the presence of  mouse apoE 
increases Aβ deposition in a gene dose dependent fashion in vivo212. 
Additionally, brain levels of apoE are elevated, coincident with glial 
activation, after a variety of brain injury paradigms213. Thus, the effects of TBI 
on apoE/Aβ interactions may be the result of local injury-induced increases in 
the brain concentrations of apoE, APP, and Aβ. 
 
General mechanisms of elevated Aβ/APP 
 Mounting evidence suggests that brain inflammation and oxidative stress 
resulting from TBI, stroke, or even chronic low-level insult (e.g., hypoxia due 
to breathing problems214) induces the accumulation of APP in the brain. 
Possible mechanisms of elevated APP, Aβ, and apoE levels following brain 
injury include upregulation, release of intracellular peptides, passage from the 
periphery through an injury-compromised blood-brain barrier100,215-225, and/or 
injury-induced problems with clearance. Oxidative stress, a common 
component of all types of brain injury, is sufficient to induce Aβ 
accumulation115, and some evidence suggests that insult-induced microglial 
activation ultimately causes upregulation and accumulation of APP87,226-229. 
 Whatever the mechanism, if the non-amyloidogenic α-secretase pathway 
metabolizes the excess APP, then the subsequent production of sAPPα 
fragments could have a significant neuroprotective effect by a number of 
mechanisms. If the local environment promotes the amyloidogenic β-secretase 
cleavage pathway (e.g., high cholesterol/low phospholipid membrane content), 
the potential beneficial impact of elevated APP levels could be reduced or 
reversed, and may increase the risk of developing AD neuropathology via 
accumulation of Aβ. Thus, APP accumulation in response to acute brain damage, 
as well as chronic inflammation, may play an important role in  the development 
of AD. This would suggest several possible preventative/therapeutic treatment 
strategies, including prophylaxis, attenuating the accumulation of Aβ in the 
brain, and neutralizing the neurotoxic effects of aggregated Aβ via degradation 
and/or clearance from the brain. 
 
Therapeutic implications 
1. Reduce risk of insult-induced brain damage by maintaining 
a high antioxidant, low cholesterol diet 
 Diet has the potential to effect sporadic Aβ accumulation over the lifespan 
and to reduce risk of long-term damage as a result of an insult to the brain by a 
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number of mechanisms. For example, caloric restriction appears to be 
neuroprotective in APP transgenic mice230,231, perhaps by decreasing the 
accumulation of Aβ deposits 232. Mounting epidemiological evidence suggests 
that diet can decrease the risk for developing AD233-235. 
 A diet high in antioxidants has the potential to attenuate both basal and 
injury-induced oxidative stress. Given that Aβ accumulation seems to cause 
oxidative stress and inflammation, leading to the accumulation of even more 
Aβ, keeping free radical-induced oxidative stress in check may reduce the 
slow, but steady, accumulation of Aβ in the brain with aging236,237. 
Epidemiological evidence suggests that high intake of food-based vitamin E is 
associated with a lower incidence of AD in humans238, and chronic dietary 
administration of the antioxidant vitamin E to young (but not old) APPsw mice 
reduced Aβ deposition239. Dietary administration of the antioxidant vitamin E 
to APPsw mice before and after repetitive TBI ameliorated oxidative stress, 
injury-accelerated Aβ formation, and behavioral impairments, suggesting that 
oxidative stress induced by brain injury plays a mechanistic role in the risk for 
AD and that this risk can be reduced with a high antioxidant diet164. 
 Phytochemicals like polyphenols (including the phenolic acids and 
flavonoids) are bioactive chemicals found in plants (especially pigments). 
Polyphenols have antioxidant and anti-inflammatory properties, as well as 
effects on nitric oxide synthase production and other signaling pathways240,241. 
Isolated dietary polyphenols have reduced Aβ deposition and/or improved 
cognitive performance in APP transgenic mice. For example, curcumin, a 
polyphenol found in the curry spice turmeric, was shown to lower levels of 
oxidized proteins and plaque burden in APPsw mice242. Epigallocatechin-3-
gallate (EGCG), a polyphenolic component of green tea, reduced production of 
Aβ and elevated levels of α-secretase processing in vitro, and decreased levels 
of Aβ and plaque deposition in the brains of APPsw mice243. Tannic acids, also 
found in tea, have been shown to inhibit amyloid fibril formation in vitro244. 
Resveratrol, a polyphenol found in grapes and red wine, was shown to 
decrease levels of Aβ in vitro by increasing clearance, rather than inhibiting 
production, of Aβ245. Aβ-heme complexes found within plaques can cause 
oxidative stress and damage to muscarinic ACh receptors, which promote α-
secretase activity. This damage can be ameliorated by polyphenols and other 
antioxidants10,11,16. 
 Importantly, whole foods often contain a variety of phytochemicals that 
may work together synergistically 246,247. Epidemiological evidence shows that 
consumption of green tea, a food high in polyphenols, may be neuroprotective 248, 
and dietary consumption of fruits and vegetables may decrease risk of AD 249-252.  
 Animal studies have shown that dietary supplementation with foods high 
in polyphenols can also affect both neuropathology and behavior. 
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Supplementation of chow with polyphenol-rich blueberries did not decrease 
Aβ plaque levels, but improved cognitive performance, in double transgenic 
APP, PS1 mice253. Dietary supplementation of pregnant mice with pomegranate 
juice, another food with very high concentrations of polyphenols254,255, 
protected against neurodegeneration in the neonatal offspring when subjected 
to hypoxic-ischemic brain injury256. Pomegranate juice also reduced levels of 
soluble Aβ42, Aβ deposition, and fibrillar Aβ/amyloid deposition in the 
hippocampi of APPsw mice82. In addition to the antioxidant effects of 
polyphenolic phytochemicals, ellagic acid extracted from pomegranate husks 
can inhibit β-secretase activity in vitro257. Thus, it appears that antioxidants 
and various naturally occurring dietary phytochemicals can decrease the levels 
of soluble and deposited Aβ in the brain, possibly by inhibiting production, 
disrupting aggregation, or enhancing clearance of Aβ. 
 Additionally, phospholipids like the omega-3 fatty acids increase 
membrane fluidity, promoting α-secretase processing of APP and the 
formation of neuroprotective sAPPα, whereas cholesterol can decrease 
membrane fluidity and promote β-secretase processing of APP and the 
formation of neurotoxic Aβ. Diets high in omega-3 fatty acids and low in 
cholesterol should therefore promote α-secretase (and inhibit β-secretase) 
processing of both basal and insult-induced APP125, leading to the generation 
of less harmful Aβ and more neuroprotective sAPPα127,129. For individuals 
with very high cholesterol levels, reduction via drugs like the statins may also 
provide some benefit 258.  
 The omega-3 essential fatty acids such as those contained in fish oil (e.g., 
docosahexaenoic acid / DHA) may be neuroprotective in humans259-263. DHA 
comprises around 15% of the brain’s total fatty acids, and 30-40% of the gray 
matter. Rodent studies have also shown beneficial effects of dietary DHA on 
learning in a rat model of AD264,265 and on both plaque deposition and dendritic 
pathology in aged APPsw mice127,129. 
 Thus, a diet high in antioxidants and omega-3 fatty acids and low in 
cholesterol should maintain a brain environment that is relatively resistant to 
the effects of brain damage following insult. The prophylactic mechanisms 
may work through a number of pathways, including attenuation of oxidative 
stress and inflammation, promotion of α-secretase APP processing/production of 
neuroprotective sAPPα, and inhibition of β-secretase APP processing/production 
of neurotoxic Aβ. Other prophylactic strategies may involve regular exercise 
and the use of non-steroidal anti-inflammatory drugs84,266-269. 
 
2. Prevent Aβ accumulation following injury 
 In the event of an acute brain injury, efforts should next be made to deal 
with the newly increased risk of Aβ accumulation. Because of the evidence 
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that α-secretase processing of APP both produces neuroprotective sAPPα and 
prevents the formation of potentially toxic Aβ, promotion of α-secretase 
processing may prove to be an effective strategy for dealing with the locally 
elevated concentrations of APP that tend to follow brain injury. In vivo 
application of exogenous sAPPα had positive effects on functional motor 
outcome, cellular apoptosis, and axonal injury following TBI in rats174. 
Therapeutic strategies that promote α-secretase processing could have effects 
on Aβ accumulation via multiple pathways45,47. A number of compounds are 
associated with an upregulation of α-secretase processing46, including protein 
kinase C activators (like phorbol esters)270, various growth factors, cholesterol-
lowering drugs, steroid hormones, non-steroidal anti-inflammatory drugs268,271, 
metal ions, and phytochemicals272. ACh muscarinic agonists also promote α-
secretase via interactions with M1 and M3 receptors273-276. These receptors are 
damaged by oxidative stress from Aβ-heme complexes, and this damage is 
ameliorated by dietary polyphenols16, providing yet another mechanism by 
which diet could effect the risk for AD before and following brain damage. 
 In addition to stimulation of the non-amyloidogenic α-secretase APP 
cleavage pathway, β- and/or γ-secretase inhibition represents another potential 
strategy for dealing with the accumulation of APP following brain injury277-279. 
For example, γ-secretase inhibitors can decrease plaque load in APPsw 
transgenic mice280 and provide neuroprotection to cultured cortical neurons 
from hypoxia-induced increases in mitochondrial dysfunction, neuronal 
membrane damage, apoptosis, and APP cleavage187. It is worthy to note, 
however, that γ-CTF/AICD, one of the byproducts of γ-secretase processing, 
acts as a nuclear transcription factor and affects calcium signaling281,282. It is 
unclear how inhibiting the production of this APP fragment could change other 
cellular parameters such as excitotoxic threshold.  
 
3. Clear and/or neutralize Aβ after injury 
 Once β-secretase and γ-secretase cleave APP and produce Aβ in high 
enough concentrations, it appears inevitable that the longer isoforms (e.g., 
Aβ42) will begin to clump together, forming oligomeric aggregates and 
eventually dense-core amyloid plaques. This implies that after a brain injury, 
Aβ clearance, degradation, and/or aggregation inhibition should be the next 
therapeutic target. Some evidence suggests that soluble and insoluble Aβ is 
constantly degraded by a number of proteases in the extracellular matrix and 
interstitial fluid. Zinc metalloproteinases, including endothelin-converting 
enzymes, insulin-degrading enzyme, and neprilysin have all been shown to 
degrade soluble Aβ, and metalloproteinase-9 can degrade aggregated fibrillar 
Aβ283,284. This suggests a degree of dynamic equilibrium in the brain for Aβ 
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and amyloid plaques, and provides another target for therapeutic interactions. 
These strategies should be carefully evaluated, as it is possible that dissolving 
deposited fibrillar Aβ could reintroduce potentially toxic oligomeric Aβ 
aggregates to the surrounding brain tissue. 
 Several studies have assessed the effects of immunotherapeutic treatments 
targeting Aβ266,285. For instance, active immunization with Aβ and Aβ 
fragments can reduce Aβ deposition, astrogliosis, and learning deficits in APP 
transgenic mice286-290. In a study of active immunization of human AD patients 
with Aβ, the treatment appeared to have had a small effect on Aβ levels, but 
also seemed to have induced fatal encephalitis, micro-hemorrhages, and other 
adverse effects291. Passive immunization with monoclonal anti-AΒ antibodies 
eliminates the potentially harmful auto-immunological responses of active 
immunization and may thus represent a safer therapeutic strategy292,293. Several 
studies have now confirmed that passive immunization of APP transgenic mice 
with Aβ-targeting monoclonal antibodies can reduce brain concentrations of 
several forms of Aβ, leading to improved neuronal function and cognition. 
 Old PDAPP mice given the monoclonal Aβ antibody m266 (which binds 
to the central domain of soluble, non-fibrillar Aβ) exhibited improved 
cognition, but no observable effect on Aβ deposition, within 24-72 hours81. 
Additionally, middle- and old-aged PPAPP mice treated for weeks to months 
with the monoclonal N-terminal Aβ antibody 10D5 accumulated 50% less 
diffuse and fibrillar Aβ in the hippocampus and exhibited improved spatial 
learning. Furthermore, hippocampal LTP, a measure of synaptic efficacy, was 
normal in 10D5-treated PDAPP mice, but deficient in untreated PDAPP mice79. 
 Nine to 11-month old APPsw mice treated with the monoclonal N-terminal 
Aβ antibody BAM10 for several days demonstrated improved cognition but no 
reduction in Aβ deposition levels83, and another study294 reported improved 
exploratory performance and reduced Aβ deposition in old (~22-month) APPsw 
mice after 3 months of treatment with the monoclonal Aβ antibody 2286. Both 
active and passive immunization was also shown to prevent synaptic loss in 
APPsw mice295. NAB61, an antibody specific to oligomeric Aβ, improved 
cognition but did not reduce plaque load296. 
 These effects of passive monoclonal Aβ antibody treatment provide direct 
evidence for the detrimental cognitive effects of Aβ aggregation and 
deposition. The behavioral effects in transgenic mice seem to be evident by the 
first several days of testing, but the effects on Aβ deposition and/or clearance 
seem to take at least several weeks. This suggests that the clearance of Aβ 
soluble aggregates may have a direct and immediate effect on neuronal function. 
 Although the various anti-Aβ antibodies all bind to Aβ, they bind at 
different epitopes and to different conformations, and the mechanism of Aβ 
clearance after peripheral monoclonal antibody treatment remains to be 
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determined. Possibilities include the antibody binding to: 1) Aβ plaques in the 
brain, leading to microglial activation and phagocytosis297,294, 298, 2) Aβ plaques 
in the brain, leading to plaque disruption297,299, 3) soluble, non-deposited Aβ in 
the brain, disrupting aggregation81, and/or 4) soluble Aβ in the peripheral, 
causing a peripheral “soluble Aβ sink”79,293,300,301. Given that evidence exists 
for all of these potential mechanisms, it is possible that a cocktail of various 
monoclonal antibodies may provide the most effective results. Regardless of 
the mechanism, studies on the effects of passive immunization with 
monoclonal Aβ antibodies support the idea that targeting Aβ with antibodies 
may be a viable treatment for AD, and that this treatment strategy has a chance 
to be effective and safe. Caution should be exercised, however, as certain N-
terminal Aβ antibodies that can bind to fibrillar Aβ have the potential to 
weaken amyloid-ridden blood vessels, leading to micro-hemorrhage301,302. 
Another interesting approach involves gene therapy, in which adeno-associated 
virus vectors cause the expression of Aβ antibody fragments that can bind to 
Aβ, but lack the ability to activate a microglial immune response303,304. 
 
Summary 
 The accumulation of Aβ in the brain is a causative factor for Alzheimer’s 
disease, and evidence suggests that a variety of brain injuries may increase the 
risk for AD. People with traumatic brain injury, seizures or stroke are more 
likely to develop Aβ plaques in their brains. Even children may quickly 
develop AD-like plaques following TBI. The most common cause of brain 
injury in the elderly is stroke, and most AD brains exhibit stroke pathology at 
autopsy. Animal experiments suggest that brain damage elevates levels of 
APP, and consequently Aβ, and accelerates plaque deposition. It is possible 
that brain damage initiates or accelerates AD pathology by upregulated APP 
and ApoE (a protein involved in transforming soluble Aβ into plaques), 
decreased clearance of Aβ, blood-brain barrier dysfunction (allowing 
peripheral Aβ to enter the brain), and/or increased neuronal release of Aβ 
during damage-induced synaptic activity. Thus, brain damage may trigger a 
cascade of physiological events leading to AD. Because AD pathology 
includes buildup of vascular Aβ, and because this increases the risk of future 
stroke, the process may self-propagate. If early efforts are made to prevent 
excessive Aβ deposition after acute brain damage such as TBI or stroke, it may 
be possible to delay the onset of AD. Because AD is a progressive disease of 
the elderly, delaying the onset by only a few years would significantly 
decrease its prevalence. 
 Currently, a multifaceted therapeutic approach appears to have the best 
chance of reducing the risk of AD following brain injury. A consistently high 
antioxidant, low cholesterol diet may help to attenuate brain damage following 
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insult. After a damaging event, efforts should be made to reduce the 
overproduction of Aβ, perhaps by promoting α-secretase cleavage, thereby 
inducing sAPPα and inhibiting Aβ production, or by inhibiting γ- or β-secretase 
processing. Residual Aβ may be dealt with using anti-Aβ monoclonal 
antibodies or promoting Aβ proteolytic degradation and/or clearance. Because 
stroke is a relatively common disorder of aging, preventing the increased 
accumulation of AD neuropathology is of utmost importance in light of the 
fact that low-level background Aβ deposition seems to occur over the lifetime 
of the individual. Additionally, because TBI often occurs in young patients, 
and AD is a disease of aging, there may be ample time to prevent or reverse 
the AD-like neuropathology associated with brain injury early in life. 
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