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Many of these lines were found to be of 

other carbocations, such as CH
3

+, C
2
H

3

+, 

C
2
H

2

+, and CH
2

+ [for a review, see ( 8)]. Each 

time I proudly reported these discoveries, 

Olah responded, “impressive, but what 

about CH
5

+?” After “weeding out” those 

thousands of understood spectral lines, the 

remaining messy spectrum was undeci-

pherable, and the 900 lines of CH
5

+ were re-

ported without assignment ( 1). Even purely 

empirical attempts at finding some regular-

ity of the spectrum were not successful.

Asvany et al. have been able to determine 

the energy separation between several pairs 

of lowest levels using the action spectros-

copy invented by Schlemmer and Gerlich 

( 9). The proton affinity of CH
4
 (5.72 eV) is 

slightly greater than that of CO
2
 (5.68 eV) so 

the reaction CH
5

+ + CO
2
 → CH

4
 + CO

2
H+ is 

endothermic. Addition of a resonant 3.3-µm 

(0.37 eV) laser photon makes this reaction 

exothermic. Thus, they can do spectroscopy 

by counting CO
2
H+ ions rather than pho-

tons. This paradigm shift from photon- to 

ion-counting spectroscopy has increased 

the sensitivity—instead of needing 1013 ions, 

103 CH
5

+ suffice. Also, trapped ions can be 

cooled to cryogenic temperature, which 

leads to a 100 times increase in accuracy.

The 2897 lines observed by Asvany et al. at 

10 K demonstrate the complexity of the CH
5

+ 

spectrum. In contrast, CH
4
 at 10 K has only 

four rotational levels with quantum num-

ber J < 3 populated and only 10 transitions 

can be observed. The 300 times increase in 

spectral density from CH
4
 to CH

5

+ is caused 

by proton scrambling and inversion motion. 

Rotational assignments could be made that 

differ from those they reported, but these are 

minor details—the CoDiff values are correct 

and the key to advancing our understanding.

In spite of the complexity, each quantum 

level can be specified by using the total pro-

ton spin quantum number and the parity 

( 10). The scrambling of the five protons with 

spin 1/2 produces a total nuclear spin angu-

lar momentum I according to the formula

[D
1/2

]5 = D
5/2

 + 4D
3/2

 + 5D
1/2

This formula means that each of the lev-

els of CH
5

+ have I = 5/2 (A
1
), 3/2 (G

1
), or 1/2 

(H
1
), and the number of levels are in the 

ratio of 1:4:5 and the CoDiffs 1:16:25. Each 

level also has a definite parity of + or – and 

their numbers are equal. The CoDiffs re-

ported by Asvany et al. are for levels with 

I = 3/2 and 1/2 and the same parity. The 

next step will be to find CoDiffs with dif-

ferent parity, which the authors note could 

be tackled by applying their method for far-

infrared spectroscopy.

The results by Asvany et al. put the ex-

periment far ahead of the theory. To date, 

Wang and Carrington’s computation ( 11), 

based on the potential energy surface (PES) 

of Jin et al. ( 12), seems to be the only fron-

tal attack to this problem, but it does not 

include rotation. A brute-force variational 

calculation of the five protons with an ac-

curate PES may be the way to solve this 

problem. Such treatment has been success-

ful for H
3

+, but the formalism and compu-

tation will be much more demanding for a 

five-proton system.

As in Olah’s chemistry on Earth, CH
5

+ 

is pivotal for producing hydrocarbons in 

space. The lines list by Asvany et al. suf-

fices for detecting interstellar CH
5

+, but we 

badly need strongest lines for I = 5/2 (A
1
). 

The classical CH
3

+ ion is yet to be detected, 

so detection of the nonclassical CH
5

+ will 

be difficult but worth a try. Once the far-

infrared transitions are observed, including 

I = 5/2 levels, more sensitive observational 

techniques can be used. I anticipate that 

this enfant terrible will be caught in inter-

stellar space far ahead of its theoretical un-

derstanding, which will take at least a few 

more decades.    ■ 
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O
ver the past 2 years, increased focus 

on statistical analysis brought on by 

the era of big data has pushed the 

issue of reproducibility out of the 

pages of academic journals and into 

the popular consciousness ( 1). Just 

weeks ago, a paper about the relationship 

between tissue-specific cancer incidence 

and stem cell divisions ( 2) was widely misre-

ported because of misunderstandings about 

the primary statistical argument in the pa-

per ( 3). Public pressure has contributed to 

the massive recent adoption of reproducible 

research tools, with corresponding improve-

ments in reproducibility. But an analysis 

can be fully reproducible and still be wrong. 

Even the most spectacularly irreproducible 

analyses—like those underlying the ongoing 

lawsuits ( 4) over failed genomic signatures 

for chemotherapy assignment ( 5)—are ulti-

mately reproducible ( 6). Once an analysis is 

reproducible, the key question we want to 

answer is, “Is this data analysis correct?” We 

have found that the most frequent failure in 

data analysis is mistaking the type of ques-

tion being considered.

Any specific data analysis can be broadly 

classified into one of six types (see the fig-

ure). The least challenging of these is a 

descriptive data analysis, which seeks to 

summarize the measurements in a single 

data set without further interpretation. An 

example is the United States Census, which 

aims to describe how many people live in 

different parts of the United States, leaving 

the interpretation and use of these counts to 

Congress and the public.

An exploratory data analysis builds on 

a descriptive analysis by searching for 

discoveries, trends, correlations, or rela-

tionships between the measurements to 

generate ideas or hypotheses. The four-star 

planetary system Tatooine was discovered 
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when amateur astronomers explored public 

astronomical data from the Kepler tele-

scope ( 7). An exploratory analysis like this 

seeks to make discoveries, but can rarely 

confirm those discoveries. Follow-up stud-

ies and additional data were needed to con-

firm the existence of Tatooine ( 8).

An inferential data analysis quantifies 

whether an observed pattern will likely hold 

beyond the data set in hand. This is the most 

common statistical analysis in the formal 

scientific literature. An example is a study 

of whether air pollution correlates with life 

expectancy at the state level in the United 

States ( 9). In nonrandomized experiments, 

it is usually only possible to determine the 

existence of a relationship between two mea-

surements, but not the underlying mecha-

nism or the reason for it.

Going beyond an inferential data analysis, 

which quantifies the relationships at popu-

lation scale, a predictive data analysis uses 

a subset of measurements (the features) 

to predict another measurement (the out-

come) on a single person or unit. Web sites 

like FiveThirtyEight.com use polling data to 

predict how people will vote in an election. 

Predictive data analyses only show that you 

can predict one measurement from another; 

they do not necessarily explain why that 

choice of prediction works.

A causal data analysis seeks to find out 

what happens to one measurement on av-

erage if you make another measurement 

change. Such an analysis identifies both the 

magnitude and direction of relationships 

between variables on average. For example, 

decades of data show a clear causal rela-

tionship between smoking and cancer ( 10). 

If you smoke, it is certain that your risk of 

cancer will increase. The causal effect is real, 

but it affects your average risk.

Finally, a mechanistic data analysis seeks 

to show that changing one measurement 

always and exclusively leads to a specific, 

deterministic behavior in another. For ex-

ample, data analysis has shown how wing 

design changes air flow over a wing, leading 

to decreased drag. Outside of engineering, 

mechanistic data analysis is extremely chal-

lenging and rarely achievable.

Mistakes in the type of data analysis and 

therefore the conclusions that can be drawn 

from data are made regularly. In the last 6 

months, we have seen inferential analyses 

of the relationship between cellphones and 

brain cancer interpreted as causal ( 11) or the 

exploratory analysis of Google search terms 

related to flu outbreaks interpreted as a pre-

dictive analysis ( 12). The mistake is so com-

mon that it has been codified in standard 

phrases (see the table).

Determining which question is being 

asked can be even more complicated when 

multiple analyses are performed in the same 

study or on the same data set. A key danger 

is causal creep—for example, when a ran-

domized trial is used to infer causation for 

a primary analysis and data from secondary 

analyses are given the same weight. To ac-

curately represent a data analysis, each step 

in the analysis should be labeled according 

to its original intent.

Confusion between data analytic ques-

tion types is central to the ongoing repli-

cation crisis, misconstrued press releases 

describing scientific results, and the contro-

versial claim that most published research 

findings are false ( 13,  14). The solution is to 

ensure that data analytic education is a key 

component of research training. The most 

important step in that direction is to know 

the question.  ■ 

REFERENCES

 1. “How science goes wrong,” The Economist, 19 October 
2013; see www.economist.com/news/leaders/21588069-
scientific-research-has-changed-world-now-
it-needs-change-itself-how-science-goes-wrong.

 2. C. Tomasetti, B. Vogelstein, Science 347, 78 (2015).  
 3. See www.bbc.com/news/magazine-30786970.
 4. Duke’s Legal Stance: We Did No Harm, The Cancer 

Letter Publications (2015); see www.cancerletter.com/
articles/20150123_2.

 5. A. Potti et al., Nat. Med. 12, 1294 (2006).  
 6. K. A. Baggerly, K. R. Coombes, Ann. Appl. Stat. 3, 1309 

(2009).  
 7. “Planet with four stars discovered by citizen astrono-

mers,” Wired UK (2012); see www.wired.co.uk/news/
archive/2012-10/15/four-starred-planet.

 8. M. E. Schwamb et al.; http://arxiv.org/abs/1210.3612 
(2013).

 9. A. W. Correia et al., Epidemiology 24, 23 (2013).  
 10. O. A. Panagiotou et al., Cancer Res. 74, 2157 (2014).
 11. E. Oster, Cellphones Do Not Give You Brain Cancer, 

FiveThirtyEight (2015); see http://fivethirtyeight.com/
features/cellphones-do-not-give-you-brain-cancer/.

 12. D. M. Lazer, R. Kennedy, G. King, A. Vespignani, The Parable 
of Google Flu: Traps in Big Data Analysis (2014); see 
http://dash.harvard.edu/handle/1/12016836.

 13. L. R. Jager, J. T. Leek, Biostatistics 15, 1 (2014).  
 14. A. Gelman, K. O’Rourke, Biostatistics 15, 18 (2014).  

Did you summarize the data?
Not a
data

analysis

Descriptive

Exploratory

Inferential Predictive

Causal Mechanistic

Did you report the summaries without
interpretation?

Did you quantify whether your discoveries
are likely to hold in a new sample?

No

No

No

No Yes

Yes

Yes

Are you trying to fgure out how changing the
average of one measurement afects another?

Is the efect you are looking for an average
efect or a deterministic efect?

Are you trying to predict
measurement(s) for individuals?

Yes

DeterministicAverage

No

Yes

Data analysis fowchart

 

Common mistakes

REAL QUESTION TYPE PERCEIVED QUESTION TYPE PHRASE DESCRIBING ERROR

Inferential Causal “Correlation does not imply causation”

Exploratory Inferential “Data dredging”

Exploratory Predictive “Overftting”

Descriptive Inferential “n of 1 analysis” Published online 26 February 2015; 
10.1126/science.aaa6146
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